ILLINOIS REGISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

1) <u>Heading of the Part</u>: Water Quality Standards

2) <u>Code Citation</u>: 35 Ill. Adm. Code 302

Section Numbers:	Proposed Actions:
	Amendment
302.101	Amendment
302.102	Amendment
302.103	Amendment
302.105	Amendment
302.201	Amendment
302.202	Amendment
302.203	Amendment
302.204	Amendment
302.205	Amendment
302.206	Amendment
302.207	Amendment
302.208	Amendment
302.209	Amendment
302.210	Amendment
302.211	Amendment
302.212	Amendment
302.301	Amendment
	Amendment
302.303	Amendment
	Amendment
302.405	Amendment
302.407	Amendment
302.408	Amendment
	Amendment
302.410	Amendment
302.412	Amendment
302.501	Amendment
	302.102 302.103 302.201 302.202 302.203 302.204 302.205 302.206 302.207 302.208 302.209 302.210 302.210 302.211 302.212 302.301 302.302 302.303 302.303 302.304 302.305 302.305 302.306 302.307 302.401 302.402 302.403 302.404 302.405 302.409 302.409 302.409

ILLINOIS REGISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

302.502	Amendment
302.503	Amendment
302.504	Amendment
302.505	Amendment
302.506	Amendment
302.507	Amendment
302.508	Amendment
302.509	Amendment
302.510	Repealed
302.515	Amendment
302.520	Amendment
302.521	Amendment
302.525	Amendment
302.530	Amendment
302.535	Amendment
302.540	Amendment
302.545	Amendment
302.550	Amendment
302.553	Amendment
302.555	Amendment
302.560	Amendment
302.563	Amendment
302.565	Amendment
302.570	Amendment
302.575	Amendment
302.580	Amendment
302.585	Amendment
302.590	Amendment
302.595	Amendment
302.601	Amendment
302.603	Amendment
302.604	Amendment
302.606	Amendment
302.612	Amendment
302.615	Amendment
302.618	Amendment
302.621	Amendment
302.627	Amendment
302.630	Amendment
302.633	Amendment

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

302.645	Amendment
302.648	Amendment
302.651	Amendment
302.654	Amendment
302.657	Amendment
302.658	Amendment
302.663	Amendment
302.666	Amendment
302.669	Amendment
302.Appendix A	Repealed
302.Appendix B	Repealed

- 4) <u>Statutory Authority</u>: Implementing Section 13 and authorized by Sections 11(b) and 27 of the Environmental Protection Act [415 ILCS 5/13, 11(b), and 27].
- 5) <u>A Complete Description of the Subjects and Issues Involved</u>: In 2016, the Board began reviewing its rules to identify obsolete, repetitive, confusing, or otherwise unnecessary language. On January 10, 2018, the Illinois Environmental Protection Agency (IEPA) filed a proposal to update provisions including Part 302. IEPA's proposal arose from Executive Order 2016-13, which required agencies to identify outdated, repetitive, confusing, or unnecessary rules and then amend or repeal them. These proposed amendments to Part 302 include those submitted by IEPA and those identified separately by the Board. Both IEPA and the Board intend the amendments to be non-substantive clarifications.
- 6) <u>Published studies or reports, and sources of underlying data, used to compose this</u> rulemaking: No
- 7) <u>Will this proposed rulemaking replace an emergency rule currently in effect</u>? No
- 8) <u>Does this rulemaking contain an automatic repeal date</u>? No
- 9) <u>Does this proposed rulemaking contain incorporations by reference</u>? No
- 10) Are there any proposed rulemakings to this Part pending? No
- 11) <u>Statement of Statewide Policy Objectives</u>: This proposed amendment does not create or enlarge a State mandate as defined in Section 3(b) of the State Mandates Act. [30 ILCS 805/3].

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

12) <u>Time, Place, and Manner in which interested persons may comment on this proposed</u> <u>rulemaking</u>: The Board will accept written public comments on this proposal for a period of at least 45 days after the date of publication in the *Illinois Register*. Public comments should refer to Docket R18-23 and be filed electronically through the Clerk's Office On-Line (COOL) on the Board's website at pcb.illinois.gov. Public comments may be addressed to:

> Clerk's Office Illinois Pollution Control Board 100 W. Randolph St., Suite 11-500 Chicago, IL 60601

Interested persons may download copies of the Board's opinions and orders in R18-23 from the Board's Web site at pcb.illinois.gov and may also request copies by calling the Clerk's office at 312-814-3620.

- 13) Initial Regulatory Flexibility Analysis:
 - A) <u>Types of small businesses, small municipalities and not for profit corporations</u> <u>affected</u>: None
 - B) <u>Reporting, bookkeeping or other procedures required for compliance</u>: None
 - C) <u>Types of Professional skills necessary for compliance</u>: None
- 14) <u>Small Business Impact Analysis</u>: The Board expects that this rulemaking will not have an adverse impact on small business.
- 15) <u>Regulatory Agenda on which this rulemaking was summarized</u>: January 2022

The full text of the Proposed Amendments begins on the next page:

1		TITLE 35: ENVIRONMENTAL PROTECTION	
2 3	SUBTITLE C: WATER POLLUTION CHAPTER I: POLLUTION CONTROL BOARD		
		CHAPTER I: POLLUTION CONTROL BOARD	
4 5		PART 302	
6		WATER QUALITY STANDARDS	
7		WATER COALITY STANDARDS	
8		SUBPART A: GENERAL WATER QUALITY PROVISIONS	
9			
10	Section		
11	302.100	Definitions	
12	302.101	Scope and Applicability	
13	302.102	Allowed Mixing, Mixing Zones and ZIDs	
14	302.103	Stream Flows	
15	302.104	Main River Temperatures	
16	302.105	Antidegradation	
17			
18		SUBPART B: GENERAL USE WATER QUALITY STANDARDS	
19			
20	Section		
21	302.201	Scope and Applicability	
22	302.202	Purpose	
23	302.203	Offensive Conditions	
24	302.204	pH	
25	302.205	Phosphorus	
26	302.206	Dissolved Oxygen	
27	302.207	Radioactivity	
28	302.208	Numeric Standards for Chemical Constituents	
29	302.209	Fecal Coliform	
30	302.210	Other Toxic Substances	
31	302.211	Temperature	
32	302.212	Total Ammonia Nitrogen	
33	302.213	Effluent Modified Waters (Ammonia) (Repealed)	
34	CLIDD		
35	SOBP	ART C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS	
36	Section		
37	Section	Company Annlinghility	
38	302.301	Scope and Applicability	
39 40	302.302 302.303	Algicide Permits Finished Water Standards	
40 41	302.303	Chemical Constituents	
41 42	302.304	Other Contaminants	
42 43	302.303	Fecal Coliform	
43 44	302.300	Radium 226 and 228	
1 F	502.501		

45		
46		SUBPART D: CHICAGO AREA WATERWAY SYSTEM AND
47		LOWER DES PLAINES RIVER WATER QUALITY AND
48		INDIGENOUS AQUATIC LIFE STANDARDS
49		
50	Section	
51	302.401	Scope and Applicability
52	302.402	Purpose
53	302.403	Unnatural Sludge
54	302.404	pH
55	302.405	Dissolved Oxygen
56	302.406	Fecal Coliform (Repealed)
57	302.407	Chemical Constituents
58	302.408	Temperature
59	302.409	Cyanide for the South Fork of the South Branch of the Chicago River (Bubbly
60		Creek)
61	302.410	Other Toxic Substances
62	302.412	Total Ammonia Nitrogen
63		8
64	SUBF	PART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS
65		
66	Section	
67	302.501	Scope, Applicability, and Definitions
68	302.502	Dissolved Oxygen
69	302.503	pH
70	302.504	Chemical Constituents
71	302.505	Fecal Coliform
72	302.506	Temperature
73	302.507	Thermal Standards for Existing Sources on January 1, 1971
74	302.508	Thermal Standards for Sources Under Construction But Not In Operation on
75		January 1, 1971
76	302.509	Other Sources
77	302.510	Incorporations by Reference (Repealed)
78	302.515	Offensive Conditions
79	302.520	Regulation and Designation of Bioaccumulative Chemicals of Concern (BCCs)
	302.525	
		•
	302.535	
		Other Toxic Substances
		1
80 81 82 83 84 85 86 87 88	302.525 302.525 302.530 302.535 302.540 302.545 302.550	Supplemental Antidegradation Provisions for Bioaccumulative Chemicals of Concern (BCCs) Radioactivity Supplemental Mixing Provisions for Bioaccumulative Chemicals of Concern (BCCs) Ammonia Nitrogen

89	302.553	Determining the Lake Michigan Aquatic Toxicity Criteria or Values – General
90 91	302.555	Procedures Determining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion
91 92	302.333	(LMAATC): Independent of Water Chemistry
93	302.560	Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity
94		Criterion (LMAATC): Dependent on Water Chemistry
95	302.563	Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value
96		(LMAATV)
97	302.565	Determining the Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion
98		(LMCATC) or the Lake Michigan Basin Chronic Aquatic Life Toxicity Value
99		(LMCATV)
100	302.570	Procedures for Deriving Bioaccumulation Factors for the Lake Michigan Basin
101	302.575	Procedures for Deriving Tier I Water Quality Criteria and Values in the Lake
102		Michigan Basin to Protect Wildlife
103	302.580	Procedures for Deriving Water Quality Criteria and Values in the Lake Michigan
104		Basin to Protect Human Health – General
105	302.585	Procedures for Determining the Lake Michigan Basin Human Health Threshold
106		Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold
107		Value (LMHHTV)
108	302.590	Procedures for Determining the Lake Michigan Basin Human Health
109		Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health
110		Nonthreshold Value (LMHHNV)
111	302.595	Listing of Bioaccumulative Chemicals of Concern, Derived Criteria and Values
112		
113	SUBPA	ART F: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA
114		
115	Section	
116	302.601	Scope and Applicability
117	302.603	Definitions
118	302.604	Mathematical Abbreviations
119	302.606	Data Requirements
120	302.612	Determining the Acute Aquatic Toxicity Criterion for an Individual Substance –
121	202 (15	General Procedures
122	302.615	Determining the Acute Aquatic Toxicity Criterion – Toxicity Independent of
123	202 (10	Water Chemistry
124	302.618	Determining the Acute Aquatic Toxicity Criterion – Toxicity Dependent on Water
125	202 (21	Chemistry
126	302.621	Determining the Acute Aquatic Toxicity Criterion – Procedure for Combinations
127	202 (27	of Substances
128	302.627	Determining the Chronic Aquatic Toxicity Criterion for an Individual Substance –
129	202 620	General Procedures
130	302.630	Determining the Chronic Aquatic Toxicity Criterion – Procedure for
131	202 (22	Combinations of Substances The Wild and Demostic Animal Protection Criterion
132	302.633	The Wild and Domestic Animal Protection Criterion

133	302.642	The Human Threshold Criterion
134	302.645	Determining the Acceptable Daily Intake
135	302.648	Determining the Human Threshold Criterion
136	302.651	The Human Nonthreshold Criterion
137	302.654	Determining the Risk Associated Intake
138	302.657	Determining the Human Nonthreshold Criterion
139	302.658	Stream Flow for Application of Human Nonthreshold Criterion
140	302.660	Bioconcentration Factor
141	302.663	Determination of Bioconcentration Factor
142	302.666	Utilizing the Bioconcentration Factor
143	302.669	Listing of Derived Criteria
144		
145	302.APPEND	IX A References to Previous Rules (Repealed)
146	302.APPEND	
147	302.APPEND	
148		combinations of pH and temperature
149	302.TA	ABLE A pH-Dependent Values of the AS (Acute Standard)
150		ABLE B Temperature and pH-Dependent Values of the CS (Chronic
151		Standard) for Fish Early Life Stages Absent
152	302.TA	ABLE C Temperature and pH-Dependent Values of the CS (Chronic
153		Standard) for Fish Early Life Stages Present
154	302.APPEND	
155		Protection
156		
157	AUTHORITY	: Implementing Section 13 and authorized by Sections 11(b) and 27 of the
158		l Protection Act [415 ILCS 5/13, 11(b), and 27].
159		
160	SOURCE: Fi	led with the Secretary of State January 1, 1978; amended at 2 Ill. Reg. 44, p. 151,
161		ember 2, 1978; amended at 3 Ill. Reg. 20, p. 95, effective May 17, 1979; amended
162		5, p. 190, effective June 21, 1979; codified at 6 Ill. Reg. 7818; amended at 6 Ill.
163		ffective September 7, 1982; amended at 6 Ill. Reg. 13750, effective October 26,
164		d at 8 Ill. Reg. 1629, effective January 18, 1984; peremptory amendments at 10 Ill.
165		ctive December 23, 1985; amended at R87-27 at 12 III. Reg. 9911, effective May
166	-	nded at R85-29 at 12 Ill. Reg. 12082, effective July 11, 1988; amended in R88-1 at
167		98, effective April 18, 1989; amended in R88-21(A) at 14 III. Reg. 2899, effective
168	0	.990; amended in R88-21(B) at 14 III. Reg. 11974, effective July 9, 1990; amended
169		t 20 Ill. Reg. 7682, effective May 24, 1996; amended in R94-1(B) at 21 Ill. Reg.
170		December 23, 1996; expedited correction at 21 Ill. Reg. 6273, effective December
171	-	nded in R97-25 at 22 Ill. Reg. 1356, effective December 24, 1997; amended in
172		l. Reg. 11249, effective August 26, 1999; amended in R01-13 at 26 Ill. Reg. 3505,
173		uary 22, 2002; amended in R02-19 at 26 Ill. Reg. 16931, effective November 8,
174		d in R02-11 at 27 Ill. Reg. 166, effective December 20, 2002; amended in R04-21
175		4919, effective March 1, 2006; amended in R04-25 at 32 Ill. Reg. 2254, effective
176	U	008; amended in R07-9 at 32 Ill. Reg. 14978, effective September 8, 2008;

177	amended in R11-18 at 36 Ill. Reg. 18871, effective December 12, 2012; amended in R11-18(B)
178	at 37 Ill. Reg. 7493, effective May 16, 2013; amended in R08-09(D) at 39 Ill. Reg. 9388,
179	effective July 1, 2015; amended in R18-23 at 46 Ill. Reg, effective
180	
181 182	SUBPART A: GENERAL WATER QUALITY PROVISIONS
182	Section 302.100 Definitions
185	Section 502.100 Demittions
184	Unloss otherwise specified the definitions of the Environmental Protection Act (Act) [415 II CS
186	Unless otherwise specified, the definitions of the Environmental Protection Act (Act) [415 ILCS 5] and 35 Ill. Adm. Code 301 apply to this Part. As used in this Part, each of the following
187	definitions has the specified meaning.
188	
189	"Acute Toxicity" means the capacity of any substance or combination of
190	substances to cause mortality or other adverse effects in an organism resulting
191	from a single or short-term exposure to the substance.
192	
193	"Adverse Effect" means any gross or overt effect on an organism, including but
194	not limited to reversible histopathological damage, severe convulsions,
195	irreversible functional impairment and lethality, as well as any non-overt effect on
196	an organism resulting in functional impairment or pathological lesions which may
197	affect the performance of the whole organism, or which reduces an organism's
198	ability to respond to an additional challenge.
199	
200	"Chronic Toxicity" means the capacity of any substance or combination of
201	substances to cause injurious or debilitating effects in an organism which result
202	from exposure for a time period representing a substantial portion of the natural
203	life cycle of that organism, including but not limited to the growth phase, the
204	reproductive phases or such critical portions of the natural life cycle of that
205	organism.
206	
207	"Criterion" means the numerical concentration of one or more toxic substances
208	derived in compliance with the procedures in Subpart F which, if not exceeded,
209	would assure compliance with the narrative toxicity standard of 35 Ill. Adm. Code
210	302.210.
211	
212	"Early Life Stages" of fish means the pre-hatch embryonic period, the post-hatch
213	free embryo or yolk-sac fry, and the larval period, during which the organism
214	feeds. Juvenile fish, which are anatomically similar to adults, are not considered
215	an early life stage.
216	
217	"Hardness" means a water quality parameter or characteristic consisting of the
218	sum of calcium and magnesium concentrations expressed in terms of equivalent
219	milligrams per liter as calcium carbonate. Hardness is measured in compliance
220	with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm.

221		Code 301.106.
222		
223		"Mixing Zone" means a portion of the waters of the State identified as a region
224		within which mixing is allowed under 35 Ill. Adm. Code 302.102(d).
225		
226		"Thermocline" means the plane of maximum rate of decrease of temperature with
227		respect to depth in a thermally stratified body of water.
228		
229		"Total Residual Chlorine" or "TRC" means those substances which include
230		combined and uncombined forms of both chlorine and bromine and which are
230		expressed, by convention, as an equivalent concentration of molecular chlorine.
231		TRC is measured in compliance with methods specified in 40 CFR 136,
232		1 1
233		incorporated by reference in 35 Ill. Adm. Code 301.106.
234		
		"Toxic Substance" means a chemical substance that causes adverse effects in
236		humans, or in aquatic or terrestrial animal or plant life. Toxic substances include,
237		but are not limited to, those substances listed in 40 CFR 302.4, incorporated by
238		reference in 35 Ill. Adm. Code 301.106, or any "chemical substance" as defined
239		by the Illinois Chemical Safety Act [430 ILCS 45]
240		
241		"ZID" or "Zone of Initial Dilution" means a portion of a mixing zone, identified
242		pursuant to 35 Ill. Adm. Code 302.102(e), within which acute toxicity standards
243		need not be met.
244		
245	(Sour	ce: Amended at 46 Ill. Reg, effective)
246		
247 Se	ection 302.	101 Scope and Applicability
248		
249	a)	This Part contains water quality standards which apply throughout the State as
250	,	designated in 35 Ill. Adm. Code 303. Site specific water quality standards are
251		found with the water use designations in 35 Ill. Adm. Code 303.
252		
252	b)	Subpart B contains general use water quality standards which must be met in
255	0)	waters of the State for which there is no specific use designation (35 Ill. Adm.
255		Code 303.201).
255		Code 505.201).
250 257		Subport C contains the public and food processing water supply standards. These
	c)	Subpart C contains the public and food processing water supply standards. These
258 250		are cumulative with Subpart B and must be met by all designated waters at the
259		point at which water is drawn for treatment and distribution as a potable supply or
260		for food processing (35 Ill. Adm. Code 303.202).
261	1\	
262	d)	Subpart D contains the Chicago Area Waterway System and the Lower Des
263		Plaines River water quality standards. These standards must be met only by
264		certain waters designated in 35 Ill. Adm. Code 303.204, 303.220, 303.225,

265 266 267 268		303.227, 303.230, 303.235, 303.240 and 303.449. Subpart D also contains water quality standards applicable to indigenous aquatic life waters found only in the South Fork of the South Branch of the Chicago River (Bubbly Creek).
269 270 271 272	e)	Subpart E contains the Lake Michigan Basin water quality standards. These must be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm. Code 303.443.
273 274 275	f)	Subpart F contains the procedures for determining each of the criteria designated in 35 Ill. Adm. Code 302.210 and 302.410.
276 277	(Sour	ce: Amended at 46 Ill. Reg, effective)
278 279	Section 302.	102 Allowed Mixing, Mixing Zones and ZIDs
280 281 282 283 284 285	a)	Whenever a water quality standard is more restrictive than its corresponding effluent standard, or where there is no corresponding effluent standard specified at 35 Ill. Adm. Code 304, an opportunity will be allowed for compliance with 35 Ill. Adm. Code 304.105 by mixture of an effluent with its receiving waters, provided the discharger has made every effort to comply with the requirements of 35 Ill. Adm. Code 304.102.
286 287 288 289	b)	The portion, volume and area of any receiving waters within which mixing is allowed pursuant to subsection (a) must be limited by the following:
290 291 292 293 294 295		1) Mixing must be confined in an area or volume of the receiving water no larger than the area or volume which would result after incorporation of outfall design measures to attain optimal mixing efficiency of effluent and receiving waters. These measures may include the use of diffusers and engineered location and configuration of discharge points.
296 297 298 299		2) Mixing is not allowed in waters which include a tributary stream entrance if the mixing occludes the tributary mouth or otherwise restricts the movement of aquatic life into or out of the tributary.
300 301 302		3) Mixing is not allowed in water adjacent to bathing beaches, bank fishing areas, boat ramps or dockages or any other public access area.
303 304 305 306 307 308		4) Mixing is not allowed in waters containing mussel beds, endangered species habitat, fish spawning areas, areas of important aquatic life habitat, or any other natural features vital to the well being of aquatic life in a manner that maintaining aquatic life in the body of water as a whole would be adversely affected.

	1 st Notice	JCAR350302-2207052r01
309 310 311 312	5)	Mixing is not allowed in waters that contain intake structures of public or food processing water supplies, points of withdrawal of water for irrigation, or watering areas accessed by wild or domestic animals.
313 314 315 316	6)	Mixing must allow for a zone of passage for aquatic life in which water quality standards are met. However, a zone of passage is not required in receiving streams that have zero flow for at least seven consecutive days recurring on average in nine years out of 10.
317 318 319 320 321 322	7)	The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing, must not intersect any area of any body of water in such a manner that the maintenance of aquatic life in the body of water as a whole would be adversely affected.
323 324 325 326 327	8)	The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing, must not contain more than 25% of the cross-sectional area or volume of flow of a stream except for those streams for which the dilution ratio is less than 3:1. In streams where the dilution ratio is less than 3:1, the volume in which mixing occurs, alone or
328 329 330 331 332		in combination with other volumes of mixing, must not contain more than 50% of the volume flow unless an applicant for an NPDES permit demonstrates, pursuant to subsection (d), that an adequate zone of passage is provided for pursuant to subsection (b)(6).
333 334 335	9)	No mixing is allowed when the water quality standard for the constituent in question is already violated in the receiving water.
336 337 338	10)	No body of water may be used totally for mixing of single outfall or combination of outfalls, except as provided in subsection (b)(6).
339 340 341 342	11)	Single sources of effluents that have more than one outfall must be limited to a total area and volume of mixing no larger than that allowable if a single outfall were used.
343 344 345 346 347	12)	The area and volume in which mixing occurs must be as small as is practicable under the limitations prescribed in this subsection (b), and in no circumstances may the mixing encompass a surface area larger than 26 acres.
348 349 350 351 352	area a acute	ater quality standards of this Part must be met at every point outside of the and volume of the receiving water within which mixing is allowed. The toxicity standards of this Part must be met within the area and volume in which mixing is allowed, except as provided in subsection (e).

385

- 353 d) Pursuant to the procedures of Section 39 of the Act and 35 Ill. Adm. Code 309, a 354 person may apply to the Agency to include as a condition in an NPDES permit 355 formal definition of the area and volume of the waters of the State within which 356 mixing is allowed for the NPDES discharge in question. The defined area and 357 volume of allowed mixing shall constitute a "mixing zone" for the purposes of 35 358 Ill. Adm. Code: Subtitle C. Upon proof by the applicant that a proposed mixing zone conforms with the requirements of Section 39 of the Act, this Section and 359 360 any additional limitations as may be imposed by the Clean Water Act (CWA) (33 U.S.C. 1251 et seq.), the Act or Board regulations, the Agency must, under 361 Section 39(b) of the Act, include within the NPDES permit a condition defining 362 the mixing zone. 363 364
- 365 e) Under the procedures of Section 39 of the Act and 35 Ill. Adm. Code 309, a 366 person may apply to the Agency to include as a condition in an NPDES permit a 367 ZID as a component portion of a mixing zone. The ZID must be limited to waters 368 within which effluent dispersion is immediate and rapid. For this subsection, 369 "immediate" dispersion means an effluent's merging with receiving waters 370 without delay in time after its discharge and within close proximity of the end of 371 the discharge pipe, so as to minimize the length of exposure time of aquatic life to undiluted effluent, and "rapid" dispersion means an effluent's merging with 372 373 receiving waters so as to minimize the length of exposure time of aquatic life to undiluted effluent. Upon proof by the applicant that a proposed ZID conforms 374 375 with the requirements of Section 39 of the Act and this Section, the Agency must 376 under Section 39(b) of the Act, include within the NPDES permit a condition 377 defining the ZID. 378
- 379f)Under Section 39 of the Act and 35 Ill. Adm. Code 309.103, an applicant for an380NPDES permit must submit data to allow the Agency to determine that the nature381of any mixing zone or mixing zone in combination with a ZID conforms with the382requirements of Section 39 of the Act and of this Section. A permittee may383appeal Agency determinations concerning a mixing zone or ZID under the384procedures of Section 40 of the Act and 35 Ill. Adm. Code 309.181.
- 386 When a mixing zone is defined in an NPDES permit, the waters within that **g**) 387 mixing zone, for the duration of that NPDES permit, constitutes the sole waters 388 within which mixing is allowed for the permitted discharge. It will not be a 389 defense in any action brought pursuant to 35 Ill. Adm. Code 304.105 that the area 390 and volume of waters within which mixing may be allowed pursuant to subsection 391 (b) is less restrictive than the area or volume or waters encompassed in the mixing 392 zone. 393
- h) When a mixing zone is explicitly denied in a NPDES permit, no waters may be
 used for mixing by the discharge to which the NPDES permit applies, all other
 provisions of this Section notwithstanding.

397			
398	i)	Where	e an NPDES permit is silent on the matter of a mixing zone, or when no
399		NPDE	S permit is in effect, the burden of proof will be on the discharger to
400		demon	nstrate compliance with this Section in any action brought pursuant to 35 Ill.
401			Code 304.105.
402			
403	(Sourc	e: Ame	ended at 46 Ill. Reg, effective)
404			
405	Section 302.1	03 Str	eam Flows
406			
407	Except as othe	erwise p	provided in this Chapter, the water quality standards in this Part apply at all
408	-	-	periods when flows are less than the average minimum seven day low flow
409	which occurs		
410			5
411	(Sourc	e: Ame	ended at 46 Ill. Reg, effective)
412	(······································
413	Section 302.1	05 Ant	tidegradation
414	~~~~~		
415	This Section r	protects	existing uses of all waters of the State of Illinois, maintains the quality of
416	-		hat is better than water quality standards, and prevents unnecessary
417	deterioration of	•	
418			
419	a)	Existir	ng Uses
420	(1)		ictually attained in a surface water body or water body segment on or after
421			nber 28, 1975, whether or not they are included in the water quality
422			rds, must be maintained and protected. Examples of degradation of
423			ing uses of the waters of the State include:
424		CAIStIII	ig uses of the waters of the State menude.
425		1)	an action that would result in the deterioration of the existing aquatic
426		1)	community, such as a shift from a community of predominantly pollutant-
427			sensitive species to pollutant-tolerant species or a loss of species diversity;
428			sensitive species to pollutant-tolerant species of a loss of species diversity,
429		2)	an action that would result in a loss of a resident or indigenous species
430		2)	whose presence is necessary to sustain commercial or recreational
431			activities; or
432			activities, of
433		3)	an action that would preclude continued use of a surface water body or
434		5)	water body segment for a public water supply or for recreational or
435			commercial fishing, swimming, paddling or boating.
436			commercial fishing, swimming, padding of boating.
430	L)	Outota	anding Descurse Waters
437	b)	Ouisia	anding Resource Waters
438		1)	Waters that are designated as Outstanding Descurses Waters (ODWs)
439 440		1)	Waters that are designated as Outstanding Resource Waters (ORWs)
440			pursuant to 35 Ill. Adm. Code 303.205 and listed in 35 Ill. Adm. Code

	<u>1st Notice</u>			JCAR350302-2207052r01
441 442			303.20	06 must not be lowered in quality except as provided below:
443 444 445			A)	Activities that result in short-term, temporary (i.e., weeks or months) lowering of water quality in an ORW; or
446 447 448			B)	Existing site stormwater discharges that comply with applicable federal and State stormwater management regulations and do not result in a violation of any water quality standards.
449 450 451 452 453		2)	Polluta Water	ctivity in subsection (b)(1)(A) or (b)(1)(B) that requires a National ant Discharge Elimination System (NPDES) permit or a Clean Act (CWA) Section 401 certification must also comply with ction (c)(2).
454 455 456 457		3)		ctivity listed in subsection (b)(1) or any other proposed increase in ant loading to an ORW must also meet the following requirements:
458 459			A)	All existing uses of the water will be fully protected; and
460 461 462			B)	Except for activities falling under one of the exceptions provided in subsection $(b)(1)(A)$ or (B) above:
463 464				i) The proposed increase in pollutant loading is necessary for an activity that will improve water quality in the ORW; and
465 466 467 468				ii) The improvement could not be practicably achieved without the proposed increase in pollutant loading.
469 470 471 472		4)	a CWA	roposed increase in pollutant loading requiring an NPDES permit or A 401 certification for an ORW must be assessed pursuant to ction (f) to determine compliance with this Section.
473 474	c)	High (Quality V	Waters
475 476 477 478 479 480		1)	existin must b water c	t as otherwise provided in subsection (d), waters of the State whose ng quality is better than any of the established standards of this Part be maintained in their present high quality, unless the lowering of quality is necessary to accommodate important economic or social opment.
480 481 482 483 484		2)	necessi requiri	gency must assess any proposed increase in pollutant loading that sitates a new, renewed or modified NPDES permit or any activity ing a CWA Section 401 certification to determine compliance with ection. The assessment to determine compliance with this Section

|--|

485					e on a case-by-case basis. In making this assessment, the		
486		1	Agency must:				
487							
488		1	A)		der the fate and effect of any parameters proposed for an		
489				ıncrea	sed pollutant loading.		
490							
491]	B)	Assur	e the following:		
492							
493				i)	The applicable numeric or narrative water quality standard		
494					will not be exceeded as a result of the proposed activity;		
495							
496				ii)	All existing uses will be fully protected;		
497							
498				iii)	All technically and economically reasonable measures to		
499					avoid or minimize the extent of the proposed increase in		
500					pollutant loading have been incorporated into the proposed		
501					activity; and		
502							
503				iv)	The activity that results in an increased pollutant loading		
504					will benefit the community at large.		
505							
506		(C)	Use th	ne following information sources, when available:		
507							
508				i)	Information, data or reports available to the Agency from		
509					its own sources;		
510							
511				ii)	Information, data or reports supplied by the applicant;		
512				,			
513				iii)	Agency experience with factually similar permitting		
514				,	scenarios; and		
515					, ,		
516				iv)	Any other valid information available to the Agency.		
517)	,		
518	d)	Activitie	es Not	t Subjec	ct to a Further Antidegradation Assessment		
519	,				ties will not be subject to a further antidegradation		
520					osection (c).		
521							
522		1) 5	Short-	term. te	emporary (i.e., weeks or months) lowering of water quality;		
523		-,		, ••	1 , (,		
524		2) l	Bypas	ses that	t are not prohibited at 40 CFR 122.41(m), incorporated by		
525		/	• 1		5 Ill. Adm. Code 301.106;		
526		1		u J			
527		3) 1	Resno	nse act	ions under the Comprehensive Environmental Response,		
528		· ·	-		n and Liability Act (CERCLA), as amended, corrective		
			· · · P	2112410			

529 520		actions, under the Resource Conservation and Recovery Act (RCRA), as	
530 521		amended, or similar federal or State authority, taken to alleviate a release	
531		into the environment of hazardous substances, pollutants or contaminants	
532		which may pose a danger to public health or welfare;	
533			
534		4) Thermal discharges that have been approved through a CWA Section	
535		316(a) demonstration;	
536			
537		5) New or increased discharges of a non-contact cooling water:	
538			
539		A) without additives, except as provided in subsection $(d)(5)(B)$,	
540		returned to the same body of water from which it was taken, as	
541		defined by 35 Ill. Adm. Code 352.104, provided that the discharge	
542		complies with applicable Illinois thermal standards; or	
543			
544		B) containing chlorine when the non-contact cooling water is treated	
545		to remove residual chlorine, and returned to the same body of	
546		water from which it was taken, as defined in 35 Ill. Adm. Code	
547		352.104, provided that the discharge complies with applicable	
548		Illinois thermal and effluent standards at 35 Ill. Adm. Code 302,	
549		303, and 304;	
550		505, und 501,	
551		6) Discharges permitted under a current general NPDES permit as provided	
552		by 415 ILCS 5/39(b) or a nationwide or regional CWA Section 404 permit	ŕ
553		are not subject to facility-specific antidegradation review; however, the	
554		Agency must assure that individual permits or certifications are required	
555		prior to all new pollutant loadings or hydrological modifications that	
556		necessitate a new, renewed or modified NPDES permit or CWA Section	
557		401 certification that affects waters of particular biological significance,	
558		which may include streams identified by the Illinois Department of	
558 559		Natural Resources as "biologically significant"; or	
560		Natural Resources as biologically significant, or	
561		7) Changing or including a new permit limitation that does not result in an	
562		actual increase of a pollutant loading, such as those stemming from	
		1 6 6	
563		improved monitoring data, new analytical testing methods, new or revised	
564		technology or water quality based effluent limits.	
565	``		
566	e)	Lake Michigan Basin	
567		Waters in the Lake Michigan basin as identified in 35 Ill. Adm. Code 303.443 are	
568		also subject to the requirements applicable to bioaccumulative chemicals of	
569		concern found at 35 Ill. Adm. Code 302.521.	
570			
571	f)	Antidegradation Assessments	
572		In conducting an antidegradation assessment under this Section, the Agency must	

<u>1st Notice</u>

573 574

comply with the following procedures.

575	1)	A per	mit app	lication for any proposed increase in pollutant loading that		
576		necessitates the issuance of a new, renewed, or modified NPDES permit or				
577		a CWA Section 401 certification must include, to the extent necessary for				
578		the Agency to determine that the permit application meets the				
579		requirements of this Section, the following information:				
580		-		-		
581		A)	Ident	ification and characterization of the water body affected by		
582			the pi	oposed load increase or proposed activity and the existing		
583			water	body's uses. Characterization must address physical,		
584			biolo	gical and chemical conditions of the water body.		
585				-		
586		B)	Ident	ification and quantification of the proposed load increases for		
587				oplicable parameters and of the potential impacts of the		
588			-	osed activity on the affected waters.		
589			1 1	•		
590		C)	The p	surpose and anticipated benefits of the proposed activity.		
591			Such	benefits may include:		
592						
593			i)	Providing a centralized wastewater collection and treatment		
594				system for a previously unsewered community;		
595						
596			ii)	Expanding to provide service for anticipated residential or		
597				industrial growth consistent with a community's long range		
598				urban planning;		
599						
600			iii)	Adding a new product line or production increase or		
601				modification at an industrial facility; or		
602						
603			iv)	Increasing or retaining current employment levels at a		
604				facility.		
605						
606		D)	Asses	ssments of alternatives to proposed increases in pollutant		
607				ng or activities subject to Agency certification under Section		
608			401 o	f the CWA that result in less of a load increase, no load		
609			increa	ase or minimal environmental degradation. Such alternatives		
610			may i	nclude:		
611						
612			i)	Additional treatment levels, including no discharge		
613				alternatives;		
614						
615			ii)	Discharge of waste to alternate locations, including		
616				publicly-owned treatment works and streams with greater		
				-		

	<u>1st Notice</u>			JCAR350302-2207052r01
617				assimilative capacity; or
618				
619			iii)	Manufacturing practices that incorporate pollution
620				prevention techniques.
621				
622		E)	Any a	dditional information the Agency may request.
623				
624		F)		that a copy of the application has been provided to the
625			Illinoi	s Department of Natural Resources.
626				
627	2)			nust complete an antidegradation assessment in compliance
628		with t	he prov	isions of this Section on a case-by-case basis.
629		• >	TT1 4	
630		A)		Agency must consider the criteria stated in 35 Ill. Adm. Code
631			302.1	05(c)(2).
632		D)	T1 A	· · · · · · · · · · · · · · · · · · ·
633 634		B)		sence must consider the information provided by the contract up does subsection $(f(1))$
634 635			appine	eant under subsection $(f)(1)$.
636		C)	Aftor	its assassment the Agency must preduce a written analysis
637		C)		its assessment, the Agency must produce a written analysis ssing the requirements of this Section and provide a decision
638				ng one of the following results:
639			yicidi	ing one of the following results.
640			i)	If the proposed activity meets the requirements of this
641			1)	Section, then the Agency must proceed with public notice
642				of the NPDES permit or CWA Section 401 certification
643				and include the written analysis as a part of the fact sheet
644				accompanying the public notice;
645				
646			ii)	If the proposed activity does not meet the requirements of
647			,	this Section, then the Agency must provide a written
648				analysis to the applicant and must be available to discuss
649				the deficiencies that led to the disapproval. The Agency
650				may suggest methods to remedy the conflicts with the
651				requirements of this Section;
652				
653			iii)	If the proposed activity does not meet the requirements of
654				this Section, but some lowering of water quality is
655				allowable, then the Agency will contact the applicant with
656				the results of the review. If the reduced loading increase is
657				acceptable to the applicant, upon the receipt of an amended
658				application, the Agency will proceed to public notice; or if
659				the reduced loading increase is not acceptable to the
660				applicant, the Agency will transmit its written review to the

	<u>1st Notice</u>	JCAR350302-2207052r01
661 662 663		applicant in the context of an NPDES permit denial or a CWA Section 401 certification denial.
664 665 666 667	the pub Section	gency will conduct public notice and public participation through blic notice procedures found in 35 Ill. Adm. Code 309.109 or CWA a 401 certifications. The Agency must incorporate the following ation into a fact sheet accompanying the public notice:
668 669 670 671 672	A)	A description of the activity, including identification of water quality parameters for which there will be an increased pollutant loading;
673 674 675 676 677 678	В)	Identification of the affected surface water body or water body segment, any downstream surface water body or water body segment also expected to experience a lowering of water quality, characterization of the designated and current uses of the affected surface water body or water body segment and identification of which uses are most sensitive to the proposed load increase;
679 680 681 682 683	C)	A summary of any review comments and recommendations provided by Illinois Department of Natural Resources, local or regional planning commissions, zoning boards and any other entities the Agency consults regarding the proposal;
684 685 686 687	D)	An overview of alternatives considered by the applicant and identification of any provisions or alternatives imposed to lessen the load increase associated with the proposed activity; and
688 689 690 691	E)	The name and telephone number of a contact person at the Agency who can provide additional information.
692 693 694		46 Ill. Reg, effective) GENERAL USE WATER QUALITY STANDARDS
695 696 697	Section 302.201 Scope and	
698 699 700	for which there is no specific	se water quality standards which must be met in waters of the State designation (35 III. Adm. Code 303.201).
701 702 703 704	(Source: Amended at Section 302.202 Purpose	46 Ill. Reg, effective)
, 0 1		

705 The General Use standards will protect the State's water for aquatic life, wildlife, agricultural 706 use, secondary contact use and most industrial uses and ensure the aesthetic quality of the State's 707 aquatic environment. Primary contact uses are protected for all General Use waters whose 708 physical configuration permits such use. 709 (Source: Amended at 46 Ill. Reg. _____, effective _____) 710 711 712 Section 302.203 Offensive Conditions 713 714 Waters of the State must be free from sludge or bottom deposits, floating debris, visible oil, odor, 715 plant or algal growth, color or turbidity of other than natural origin. The allowed mixing 716 provisions of 35 Ill. Adm. Code 302.102 must not be used to comply with the provisions of this 717 Section. 718 (Source: Amended at 46 Ill. Reg. _____, effective _____) 719 720 721 Section 302.204 pH 722 723 pH must be within the range of 6.5 to 9.0 except for natural causes. 724 (Source: Amended at 46 Ill. Reg., effective) 725 726 727 Section 302.205 Phosphorus 728 729 Phosphorus: After December 31, 1983, Phosphorus as P must not exceed 0.05 milligram per liter (mg/L) in any reservoir or lake with a surface area of 8.1 hectares (20 acres) or more, or in 730 731 any stream at the point where it enters any such reservoir or lake. For this Section, the term 732 "reservoir or lake" does not include low level pools constructed in free flowing streams or any 733 body of water which is an integral part of an operation which includes the application of sludge 734 on land. Point source discharges which comply with 35 Ill. Adm. Code 304.123 must be in 735 compliance with this Section for purposes of application of 35 Ill. Adm. Code 304.105. 736 737 (Source: Amended at 46 Ill. Reg. _____, effective _____) 738 739 Section 302.206 Dissolved Oxygen 740 741 General use waters must maintain dissolved oxygen concentrations at or above the values 742 contained in subsections (a), (b) and (c). 743 744 a) General use waters at all locations must maintain sufficient dissolved oxygen 745 concentrations to prevent offensive conditions as required in 35 Ill. Adm. Code 302.203. Quiescent and isolated sectors of General Use waters including 746 747 wetlands, sloughs, backwaters and waters below the thermocline in lakes and

<u>1st Notice</u>

748			reservoirs must be maintained at sufficient dissolved oxygen concentrations to					
749 750		suppo	support their natural ecological functions and resident aquatic communities.					
750 751	1-)	Erroom		an mater identified in Ameridia D the discolored emager				
751	b)	-		ose waters identified in Appendix D, the dissolved oxygen				
752			concentration in the main body of all streams, in the water above the thermocline					
753				stratified lakes and reservoirs, and in the entire water column of				
754		unstra	tified l	akes and reservoirs must not be less than the following:				
755								
756 757		1)	Durir	ng the period of March through July,				
758			A)	5.0 mg/L at any time; and				
759			,					
760			B)	6.0 mg/L as a daily mean averaged over 7 days.				
761								
762		2)	Durir	ng the period of August through February,				
763								
764			A)	3.5 mg/L at any time;				
765								
766			B)	4.0 mg/L as a daily minimum averaged over 7 days; and				
767			,					
768			C)	5.5 mg/L as a daily mean averaged over 30 days.				
769								
770	c)	The d	issolve	d oxygen concentration in all sectors within the main body of all				
771	0)			tified in Appendix D must not be less than:				
772		Stical		unce in Appendix D must not be less than.				
		1)	Durin	a the new of March through Inter				
773		1)	Durir	ng the period of March through July,				
774			• >					
775			A)	5.0 mg/L at any time; and				
776								
777			B)	6.25 mg/L as a daily mean averaged over 7 days.				
778								
779		2)	Durir	ng the period of August through February,				
780								
781			A)	4.0 mg/L at any time;				
782			,					
783			B)	4.5 mg/L as a daily minimum averaged over 7 days; and				
784			,					
785			C)	6.0 mg/L as a daily mean averaged over 30 days.				
786								
787	d)	Asses	sing att	ainment of dissolved oxygen mean and minimum values				
788	u)	1 19909	Assessing attainment of dissolved oxygen mean and minimum values.					
788 789		1)	Daily	mean is the arithmetic mean of dissolved oxygen concentrations in				
		1)	•					
790 701			24 CO	nsecutive hours.				
791								

	<u>1st Notic</u>	<u>e</u>	JCAR350302-2207052r01			
792 793		2)	Daily minimum is the minimum dissolved oxygen concentration in 24 consecutive hours.			
794 795 796 797 798		3)	The measurements of dissolved oxygen used to determine attainment or lack of attainment with any of the dissolved oxygen standards in this Section must assure daily minima and daily means that represent the true daily minima and daily means.			
799 800 801 802		4)	The dissolved oxygen concentrations used to determine a daily mean or daily minimum should not exceed the air-equilibrated concentration.			
803 804 805		5) "Daily minimum averaged over 7 days" means the arithmetic mean daily minimum dissolved oxygen concentrations in 7 consecutive 24 periods.				
806 807 808 809		6)	"Daily mean averaged over 7 days" means the arithmetic mean of daily mean dissolved oxygen concentrations in 7 consecutive 24-hour periods.			
810 811 812		7)	"Daily mean averaged over 30 days" means the arithmetic mean of daily mean dissolved oxygen concentrations in 30 consecutive 24-hour periods.			
813 814	(Sour	ce: Am	ended at 46 Ill. Reg, effective)			
815	Section 302.2	207 Ra	dioactivity			
816 817 818	a)	Gross	beta concentration must not exceed 100 picocuries per liter (pCi/L).			
819 820	b)	Stront	tium 90 concentration must not exceed 2 pCi/L.			
820 821 822 823	c)	The annual average radium 226 and 228 combined concentration must not exceed 3.75 pCi/L.				
824 825	(Sour	ce: Am	ended at 46 Ill. Reg, effective)			
825 826 827	Section 302.2	208 Nu	meric Standards for Chemical Constituents			
827 828 829 830 831 832	a)	not be	cute standard (AS) for the chemical constituents listed in subsection (e) must e exceeded at any time except for those waters for which a zone of initial on (ZID) has been approved by the Agency under 35 Ill. Adm. Code 02.			
832 833 834 835	b)	must	hronic standard (CS) for the chemical constituents listed in subsection (e) not be exceeded by the arithmetic average of at least four consecutive es collected over any period of at least four days, except for those waters in			

1st Notice

- 836 which the Agency has approved a mixing zone or in which mixing is allowed 837 under 35 Ill. Adm. Code 302.102. The samples used to demonstrate attainment or 838 lack of attainment with a CS must be collected in a manner that assures an 839 average representative of the sampling period. For the chemical constituents that 840 have water quality based standards dependent upon hardness, the chronic water 841 quality standard will be calculated according to subsection (e) using the hardness 842 of the water body at the time the sample was collected. To calculate attainment 843 status of chronic-standards, the concentration of the chemical constituent in each 844 sample is divided by the calculated water quality standard for the sample to determine a quotient. The water quality standard is attained if the mean of the 845 846 sample quotients is less than or equal to one for the duration of the averaging 847 period. 848
- 849 The human health standard (HHS) for the chemical constituents listed in c) subsection (f) must not be exceeded when the stream flow is at or above the 850 851 harmonic mean flow under 35 Ill. Adm. Code 302.658 nor must an annual 852 average, based on at least eight samples, collected in a manner representative of 853 the sampling period, exceed the HHS except for those waters in which the Agency 854 has approved a mixing zone or in which mixing is allowed under 35 Ill. Adm. Code 302.102. 855 856
 - d) The standard for the chemical constituents of subsections (g) and (h) must not be exceeded at any time except for those waters in which the Agency has approved a mixing zone or in which mixing is allowed under 35 Ill. Adm. Code 302.102.
- 860 861 862

857

858 859

e) Numeric Water Quality Standards for the Protection of Aquatic Organisms

Constituent	AS (µg/L)	CS (µg/L)
Arsenic (trivalent, dissolved)	360 × 1.0* = 360	190 x 1.0* = 190
Boron (total)	40,100	7,600
Cadmium (dissolved)	$e^{A+B\ln(H)} \times \{1.138672 - \{(\ln(H))(0.041838)\}\} *$	$e^{A+B\ln(H)} \times \{1.101672 - \{(\ln(H))(0.041838)\}\} *$
	where $A = -2.918$ and $B = 1.128$	where $A = -3.490$ and $B = 0.7852$

Chromium (hexavalent, total)	16	11
Chromium (trivalent,	$e^{A+B\ln(H)} \times 0.316*$	$e^{A+B\ln(H)} \times 0.860*$
dissolved)	where $A = 3.688$ and $B = 0.8190$	where $A = 1.561$ and $B = 0.8190$
Copper (dissolved)	$e^{A+B\ln(H)} \times 0.960*$	$e^{A+B\ln(H)} \times 0.960 *$
(dissolved)	where $A = -1.464$ and $B = 0.9422$	where $A = -1.465$ and $B = 0.8545$
Cyanide**	22	5.2
Fluoride (total)	$e^{A+B\ln(H)}$	$e^{A+B\ln(H)}$, but must not
	where $A = 6.7319$ and $B = 0.5394$	exceed 4.0 mg/L where $A = 6.0445$ and $B = 0.5394$
Lead	$e^{A+B\ln(H)}$ ×	$e^{A+B\ln(H)}$ ×
(dissolved)	$ \left\{ \begin{array}{c} 1.46203 - \\ \left[(\ln(H))(0.145712) \right] \right\}^{*} $	$ \left\{ \begin{array}{c} 1.46203 - \\ (1n(H))(0.145712) \end{array} \right\} * $
	where $A = -1.301$ and $B = 1.273$	where $A = -2.863$ and $B = 1.273$
Manganese (dissolved)	$e^{A+B\ln(H)} \times 0.9812*$	$e^{A+B\ln(H)} \times 0.9812*$
	where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$
Mercury (dissolved)	$2.6 \times 0.85^* = 2.2$	$1.3 \times 0.85^* = 1.1$
Nickel (dissolved)	$e^{A+B\ln(H)} \times 0.998*$	$e^{A+B\ln(H)} \times 0.997*$
	where $A = 0.5173$ and $B = 0.8460$	where $A = -2.286$ and $B = 0.8460$

1st Notice

	TRC	19	11				
	Zinc (dissolved)	$e^{A+B\ln(H)} \times 0.978*$	$e^{A+B\ln(H)} \times 0.986$ *				
		where $A = 0.9035$ and $B = 0.8473$	where $A = -0.4456$ and $B = 0.8473$				
	Benzene	4200	860				
	Ethylbenzene	150	14				
	Toluene	2000	600				
	Xylene(s)	920	360				
	ln(H) = natural le * = conversi ** = standard followin by refere Method Flow Inj Amperon EPA-82 Chlorina CFR 136	hatural logarithms raised ogarithm of Hardness (in on factor multiplier for d to be evaluated using eit g USEPA approved meth- ence at 35 Ill. Adm. Code OIA-1677, DW: Availab ection, Ligand Exchange metry, January 2004, Doo 1-R-04-001 or Cyanide A tion, Standard Methods 4 5.3)	mg/L as CaCO ₃) issolved metals her of the ods, incorporated 301.106: ble Cyanide by , and cument Number menable to 4500-CN-G (40				
f)	Numeric Water Quality St	andard for the Protection	of Human Health				
	Constituent	$(\mu g/L)$					
	Mercury (total)	0.012					
	Benzene 310						
	where: $\mu g/L = \text{microgra}$	ams per liter					
g)	Single-value standards app	bly at the following conce	entrations for these substances:				

		Co	nstituent	Unit	Standard
		Bai	rium (total)) mg/L	5.0
		Ch	loride (tota	l) mg/L	500
		Iro	n (dissolve	ed) mg/L	1.0
		Phe	enols	mg/L	0.1
		Sel	enium (tot	al) mg/L	1.0
			ver (total)	μg/L	5.0
871				F-8	
			-	milligram permicrogram per	
872 873	h)	Wate	r quality st	andards for sulfat	e are as follows:
874 875 876 877 878		1)	livestock	k watering, the ave	is withdrawn or accessed for purposes of erage of sulfate concentrations must not exceed ed at a representative frequency over a 30 day
879 880 881 882 883		2)	standard	s in mg/L for the	ng equations provide sulfate water quality specified ranges of hardness (in mg/L as CaCO ₃) d must be met at all times:
884 885 886 887			e c	equal to 100 mg/L hloride concentra	ncentration of receiving waters is greater than or but less than or equal to 500 mg/L, and if the tion of waters is greater than or equal to 25 or equal to 500 mg/L, then:
888 889				C = [1276.7 ·	+ 5.508 (hardness) - 1.457 (chloride)] * 0.65
890 891			v	vhere:	
892 893				C = sulfate con	centration
894 895 896 897 898			1 c	00 mg/L but less	ncentration of waters is greater than or equal to than or equal to 500 mg/L, and if the chloride vaters is greater than or equal to 5 mg/L but less n:

899				
900				C = [-57.478 + 5.79 (hardness) + 54.163 (chloride)] * 0.65
901				
902				where:
903				
904				C = sulfate concentration
905				
906		3) The	e following sulfate standards must be met at all times when hardness (in
907			mg	/L as CaCO ₃) and chloride (in mg/L) concentrations other than
908			spe	ccified in (h)(2) are present:
909			-	
910			A)	If the hardness concentration of waters is less than 100 mg/L or
911			· · · · · ·	chloride concentration of waters is less than 5 mg/L, the sulfate
912				standard is 500 mg/L.
913				
914			B)	If the hardness concentration of waters is greater than 500 mg/L
915			,	and the chloride concentration of waters is 5 mg/L or greater, the
916				sulfate standard is 2,000 mg/L.
917				
918			C)	If the combination of hardness and chloride concentrations of
919			,	existing waters are not reflected in subsection $(h)(3)(A)$ or (B) , the
920				sulfate standard may be determined in a site-specific rulemaking
921				under section 303(c) of the Federal Water Pollution Control Act of
922				1972 (Clean Water Act), 33 U.S.C. 1313, and Federal Regulations
923				at 40 CFR 131.10(j)(2).
924				
925	(S	ource:	Amende	d at 46 Ill. Reg, effective)
926	× ×			
927	Section 3	02.209	Fecal C	Coliform
928				
929	a)	D	Ouring the	months May through October, based on a minimum of five samples
930	,		-	not more than a 30 day period, fecal coliform must not exceed a
931				mean of 200 per 100 milliliter (ml), nor must more than 10% of the
932				uring any 30 day period exceed 400 per 100 ml in protected waters.
933			-	waters are defined as waters which, due to natural characteristics,
934		a	esthetic v	alue or environmental significance are deserving of protection from
935				c organisms. Protected waters will meet one or both of the following
936			onditions	
937				
938		1) pre	sently support or have the physical characteristics to support primary
939			· -	ntact;
940				·
941		2) flo	w through or adjacent to parks or residential areas.
942			, -	

	<u>1st Notic</u>	<u>e</u>			JCAR350302-2207052r01	
943 944 945 946 947	b)	or geo the pu	ographic configuration and	are located in a letermined by th	s because of physical, hydrologi areas unlikely to be frequented b ne Agency at 35 Ill. Adm. Code	
948 949	c)	The A	gency must apply this rule	as required by	35 Ill. Adm. Code 304.121.	
950 951	(Sourc	e: Am	ended at 46 Ill. Reg.	_, effective)	
952 953	Section 302.2	210 Ot	her Toxic Substances			
954 955 956 957 958	concentration	s toxic stances	or parameters for which nu	n, or to animal, j	nation of substances in plant or aquatic life. Individual s are specified in this Subpart a	
959 960 961	a)				ast be deemed to be toxic or ns that exceed the following:	
962 963 964 965		1)	-	rocedures in 35	ATC) validly derived and Ill. Adm. Code 302.612 throug I; or	h
966 967 968 969		2)			CATC) validly derived and 5 Ill. Adm. Code 302.627 or	
970 971 972 973 974	b)	harmi any W	ful to wild or domestic anim	nal life if preser Protection Crite	ast be deemed to be toxic or nt in concentrations that exceed erion (WDAPC) validly derived 502.633.	
974 975 976 977 978	c)	harm		ent in concentrat	ast be deemed to be toxic or tions that exceed criteria, validly f the following:	У
979 980 981 982 983		1)	which there is a threshold	d dose below wh	a physiological mechanism for hich no damage occurs calculate h 302.648 (Human Threshold	ed:
984 985 986		2)	which any dose may caus	se some risk of o	a physiological mechanism for damage calculated under 35 Ill. Iuman Nonthreshold Criterion).	

987		
988	d)	The most stringent criterion of subsections (a), (b), and (c) applies at all points
989		outside of any waters within which, mixing is allowed under 35 Ill. Adm. Code
990		302.102. In addition, the AATC derived under subsection (a)(1) applies in all
991		waters except that it must not apply within a ZID that is prescribed in compliance
992		with 35 Ill. Adm. Code 302.102.
993		
994	e)	The procedures of Subpart F set forth minimum data requirements, appropriate
995	-)	test protocols and data assessment methods for establishing criteria under
996		subsections (a), (b), and (c). No other procedures may be used to establish such
997		criteria unless approved by the Board in a rulemaking or adjusted standards
998		proceeding under Title VII of the Act. The validity and applicability of the
999		Subpart F procedures may not be challenged in any proceeding brought under
1000		Titles VIII or X of the Act, although the validity and correctness of application of
1000		the numeric criteria derived under Subpart F may be challenged in such
1001		proceedings under subsection (f).
1002		
1003	f)	Challenges to application of criteria
1004	1)	Chancinges to approacion of enterna
1005		1) A permittee may challenge the validity and correctness of application of a
1000		criterion derived by the Agency under this Section only at the time such
1007		criterion is first applied in an NPDES permit under 35 Ill. Adm. Code
1008		309.152 or in an action under Title VIII of the Act for violation of the
1010		toxicity water quality standard. Failure of a person to challenge the
1010		validity of a criterion at the time of its first application will constitute a
1011		waiver of such challenge in any subsequent proceeding involving
1012		application of the criterion to that person.
1013		application of the effection to that person.
1014		2) Consistent with subsection $(f)(1)$, if a criterion is included as, or is used to
1015		derive, a condition of an NPDES discharge permit, a permittee may
1010		challenge the criterion in a permit appeal under Section 40 of the Act and
1017		35 Ill. Adm. Code 309.181.
1010		55 m. Adm. Code 509.101.
1019		3) Consistent with subsection $(f)(1)$, in an action where alleged violation of
1020		the toxicity water quality standard is based on alleged excursion of a
1021		criterion, the person bringing such action will have the burdens of going
1022		forward with proof and of persuasion regarding the general validity and
1025		correctness of application of the criterion.
1024		concerness of appreadon of the enterion.
1025	g)	Subsections (a) through (e) do not apply to USEPA registered pesticides approved
1020	ы	for aquatic application and applied under the following conditions:
1027		for aquatic apprication and apprice under the following conditions.
1028		1) Application must be made in strict compliance with label directions;
1029		1) Approarion must be made in surer compliance with faber directions,
1050		

	<u>1st Notic</u>	<u>e</u>				JCAR35	0302-22	07052r01
1031 1032 1033		· ·	-	-		-		of the Federal et seq. (1972));
1034 1035 1036		reg	gulations an	d guideli	pesticides mus nes of all state supervise pestic	and federal	agencies	with the laws, authorized by
1037 1038 1039 1040 1041 1042 1043 1044 1045		pro ob vic ap of	bcessing wa tained from blation of th plicators in waters affe	ter suppl the Ager e Act or determin cting pub	ncy. All permit of any of the B ing their respon	mit to apply ts must be is oard's rules nsibilities un ies will be p	y the pess ssued so or regulander this published	ticide has been as not to cause a
1043 1046	(Sourc	ee: Amende	ed at 46 Ill.	Reg	, effective)	
1047 1048	Section 302.2	211 Tempe	rature					
1049 1050 1051 1052	a)				mperature char atural condition	-	ay advers	sely affect
1053 1054	b)		•		temperature fl an natural caus			isted before the led.
1055 1056 1057	c)	The maxin °C (5 °F).	num tempe	rature rise	e above natural	temperatur	res must	not exceed 2.8
1058 1059 1060 1061 1062 1063 1064	d)	must not e percent of the water	exceed the r the hours i temperature	naximum n the 12-1 e at such l	nonth period e	ollowing tab nding with a never excee	ole during any mon	g more than one
1004			°C	°F			°C	°F
		JAN FEB. MAR. APR. MAY	16 16 16 32 32	60 60 60 90 90		JUL. AUG. SEPT. OCT. NOV.	32 32 32 32 32 32	90 90 90 90 90
		JUNE	32	90		DEC.	16	60

e) The owner or operator of a source of heated effluent which discharges 150

1067 1068 1069 1070 1071 1072 1073 1074		megawatts (0.5 billion British thermal units per hour) or more must demonstrate in a hearing before the Board in the case of new sources, after the commencement of operation, that discharges from that source have not caused and cannot be reasonably expected to cause significant ecological damage to the receiving waters. If the demonstration is not made to the satisfaction of the Board, the Board must order appropriate corrective measures to be implemented within a reasonable time as determined by the Board.
1074 1075 1076 1077 1078 1079	f)	Permits for heated effluent discharges, whether issued by the Board or the Illinois Environmental Protection Agency (Agency), can be revised if reasonable future development creates a need for reallocation of the assimilative capacity of the receiving stream as defined in the regulation above.
1080 1081 1082 1083	g)	The owner or operator of a source of heated effluent must maintain records and conduct studies of the effluents from the sources and of their effects as may be required by the Agency or in any permit granted under the Act.
1083 1084 1085 1086 1087	h)	Appropriate corrective measures will be required if, upon complaint filed in compliance with Board rules, it is found at any time that any heated effluent causes significant ecological damage to the receiving stream.
1088 1089 1090	i)	All effluents to an artificial cooling lake must comply with the applicable provisions of the thermal water quality standards in this Section and 35 Ill. Adm. Code 303, except when all of the following requirements are met:
1091 1092 1093 1094		1) All discharges from the artificial cooling lake to other waters of the State comply with the applicable provisions of subsections (a) through (d).
1095 1096 1097 1098		2) The heated effluent discharged to the artificial cooling lake complies with all other applicable provisions of this Chapter, except subsections (a) through (d).
1098 1099 1100 1101 1102 1103		3) At an adjudicative hearing the discharger must satisfactorily demonstrate to the Board that the artificial cooling lake receiving the heated effluent will be environmentally acceptable, and within the intent of the Act, including:
1104 1105 1106		A) providing conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices, and
1107 1108 1109 1110		B) controlling the thermal component of the discharger's effluent by a technologically feasible and economically reasonable method.

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121		5)	accept enviro under seq.), v If the I subsec be app	e required demonstration in subsection (j)(3) may take the form of an exptable final environmental impact statement or pertinent provisions of vironmental assessments used in the preparation of the final vironmental impact statement, or may take the form of a demonstration der Section 316(a) of the Clean Water Act (CWA)(33 U.S.C. 1251 et 1.), which addresses the requirements of subsection (j)(3). the Board finds the demonstration to be adequate as provided in osection (i)(3), the Board must promulgate specific thermal standards to applied to the discharge to that artificial cooling Lake.			
1122 1123	(Sour	ce: Amer	nded at	t 46 III. Reg, effective)			
1123	Section 302	212 Tota	l Amn	nonia Nitrogen			
1124	Section 302.	212 IUta					
1126	a)	Total ar	nmoni	a nitrogen must in no case exceed 15 mg/L.			
1127				······································			
1128	b)	The tota	al amn	nonia nitrogen acute, chronic, and sub-chronic standards are			
1129		determi	ned by	the equations given in subsections $(b)(1)$ and $(b)(2)$. Attainment of			
1130		each sta	andard	must be determined by subsections (c) and (d) in mg/L.			
1131							
1132		1) '	The ac	ute standard (AS) is calculated using the following equation:			
1133							
			AS	$=\frac{0.411}{1+10^{7.204-\text{pH}}}+\frac{58.4}{1+10^{\text{pH-7.204}}}$			
1134							
1135		2)	The ch	ronic standard (CS) is calculated using the following equations:			
1136			• >				
1137			A)	During the Early Life Stage Present period, as defined in			
1138 1139				subsection (e):			
1139				i) When water temperature is less than or equal to 14.51 °C:			
1140				i) When water temperature is less than or equal to 14.51 °C:			
1141				$CS = \left\{ \frac{0.0577}{1+10^{7.688-\text{pH}}} + \frac{2.487}{1+10^{\text{pH-7.688}}} \right\} (2.85)$			
1142							
1143				ii) When water temperature is above 14.51 °C:			
1144							
				$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.028*(25-T)})$			
1145							
1146				Where $T = Water$ Temperature, degrees Celsius			
1147							
1148			B)	During the Early Life Stage Absent period, as defined in			

1149		subsection (e):
1150		
1151		i) When water temperature is less than or equal to 7 $^{\circ}$ C:
1152		$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.504})$
1153		
1154		ii) When water temperature is greater than 7 $^{\circ}$ C:
1155		$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.028*(25-T)})$
1156		
1157		Where $T =$ Water Temperature, degrees Celsius
1158		
1159		3) The sub-chronic standard is equal to 2.5 times the chronic standard.
1160	``	
1161	c)	Attainment of the Total Ammonia Nitrogen Water Quality Standards
1162		1) The courts story double of testal energy with a set $(i_1 - i_2)/I$) must not be
1163		1) The acute standard of total ammonia nitrogen (in mg/L) must not be
1164 1165		exceeded at any time except in those waters for which the Agency has approved a ZID under 35 Ill. Adm. Code 302.102.
1165		approved a ZID under 55 III. Adm. Code 502.102.
1160		2) The 30-day average concentration of total ammonia nitrogen (in mg/L
1168		must not exceed the chronic standard (CS) except in those waters in which
1169		mixing is allowed under 35 Ill. Adm. Code 302.102. Attainment of the
1170		chronic standard (CS) is evaluated under subsection (d) by averaging at
1171		least four samples collected at weekly intervals or at other sampling
1172		intervals that statistically represent a 30-day sampling period. The
1173		samples must be collected in a manner that assures a representative
1174		sampling period.
1175		
1176		3) The 4-day average concentration of total ammonia nitrogen (in mg/L)
1177		must not exceed the sub-chronic standard except in those waters in which
1178		mixing is allowed under 35 Ill. Adm. Code 302.102. Attainment of the
1179		sub-chronic standard is evaluated pursuant to subsection (d) by averaging
1180		daily sample results collected over a period of four consecutive days
1181		within the 30-day averaging period. The samples must be collected in a
1182		manner that assures a representative sampling period.
1183	1	
1184	d)	The water quality standard for each water body must be calculated based on the
1185		temperature and pH of the water body measured at the time of each ammonia
1186		sample. The concentration of total ammonia in each sample must be divided by
1187		the calculated water quality standard for the sample to determine a quotient. The
1188		water quality standard is attained if the mean of the sample quotients is less than

	1st Notice	<u>5</u>	JCAR350302-2207052r01
1189		or equal to one for the duration of the a	averaging period.
1190 1191 1192 1193 1194 1195 1196	e)	water quality standard does not provide	n early life stages are present, and where the e adequate protection for these organisms, fe Stage Present water quality standard. All
1190 1197 1198 1199			concentrations for total ammonia nitrogen d temperature are shown in Appendix C.
1200 1201	(Source	e: Amended at 46 Ill. Reg, effe	ective)
1201 1202 1203	SUBPAR	T C: PUBLIC AND FOOD PROCESS	ING WATER SUPPLY STANDARDS
1203 1204 1205	Section 302.3	01 Scope and Applicability	
1203 1206 1207 1208 1209 1210 1211	with the generation at any point at food processing	ral use standards of Subpart B and must t which water is withdrawn for treatment	ter supply standards. These are cumulative be met in all waters designated in Part 303 t and distribution as a potable supply or for signated for public and food processing use
1212 1213	(Source	e: Amended at 46 Ill. Reg, effe	ective)
1214 1215	Section 302.30	02 Algicide Permits	
1216 1217 1218 1219	applying an al	<i>i i i</i>	be exceeded if the occurrence results from by the Agency under 35 Ill. Adm. Code 602. Ective)
1220 1221	Section 302.3	03 Finished Water Standards	
1222 1223 1224 1225	filtration, stora	e of such quality that with treatment con age and chlorination, or other equivalent irements of 35 Ill. Adm. Code 611.	
1225 1226 1227	(Source	e: Amended at 46 Ill. Reg, effe	ective)
1227 1228 1229	Section 302.3	04 Chemical Constituents	
1229 1230 1231	The following	g levels of chemical constituents must no	ot be exceeded:

CONSTITUENT	(mg/L)
Arsenic (total)	0.05
Barium (total)	1.0
Boron (total)	1.0
Cadmium (total)	0.010
Chloride (total)	250
Chromium	0.05
Fluoride (total)	1.4
Iron (dissolved)	0.3
Lead (total)	0.05
Manganese (total)	1.0
Nitrate-Nitrogen	10
Oil (hexane-solubles	0.1
or equivalent)	
Organics	
Pesticides	
Chlorinated Hydro-	
carbon Insecticides	
Aldrin	0.001
Chlordane	0.003
DDT	0.05
Dieldrin	0.001
Endrin	0.0002
Heptachlor	0.0001
Heptachlor Expoxide	0.0001
Lindane	0.004
Methoxychlor	0.1
Toxaphene	0.0005
Organophosphate	
Insecticides	
Parathion	0.1
Chlorophenoxy Herbicides	
2,4-Dichlorophenoxy-	
acetic acid (2,4-D)	0.1
2-(2,4,5-Trichloro-	
phenoxy)-propionic	
acid (2,4,5-TP	
or Silvex)	0.01
Phenols	0.001
Selenuim (total)	0.01
Sulphates	250
Total Dissolved Solids	500

JCAR350302-2207052r01

1233 1234	(Sou	rce: Amended at 46 Ill. Reg, effective)
1234	Section 302	305 Other Contaminants
1235	Section 302	505 Other Containmants
1230	Other contar	ninants which will not be adequately reduced by the treatment processes in 35 Ill.
1237		302.303 must not be present in concentrations hazardous to human health.
1230	Adm. Code	502.505 must not be present in concentrations nazardous to numan nearth.
1240	(Sou	rce: Amended at 46 Ill. Reg, effective)
1241	(500	(ec. 7 michaed at 10 m. reg, encenve)
1242	Section 302	306 Fecal Coliform
1243	~~~~~~	
1244	Notwithstan	ding the provisions of 35 Ill. Adm. Code 302.209, at no time shall the geometric
1245		on a minimum of five samples taken over not more than a 30 day period, of fecal
1246		eed 2000 per 100 ml.
1247		
1248	(Sou	rce: Amended at 46 Ill. Reg, effective)
1249		
1250	Section 302	307 Radium 226 and 228
1251		
1252		and 228 combined concentration must not exceed 5 picocuries per liter (pCi/L) at
1253	any time.	
1254		
1255	(Sou	rce: Amended at 46 Ill. Reg, effective)
1256		
1257		SUBPART D: CHICAGO AREA WATERWAY SYSTEM
1258	ANL	D LOWER DES PLAINES RIVER WATER QUALITY STANDARDS AND
1259		INDIGENOUS AQUATIC LIFE STANDARDS
1260 1261	Section 202	101 Same and Applicability
1261	Section 502	401 Scope and Applicability
1262	a)	Subpart D contains the standards that must be met only by the South Fork of the
1265	<i>a)</i>	South Branch of the Chicago River (Bubbly Creek). The Subpart B general use
1265		and Subpart C public and food processing water supply standards do not apply to
1266		Bubbly Creek.
1267		
1268	b)	Subpart D also contains the Chicago Area Waterway System and Lower Des
1269	-)	Plaines River water quality standards. Except for the Chicago River, these
1270		standards must be met only by waters specifically designated in 35 Ill. Adm. Code
1271		303. The Subpart B general use and Subpart C public and food processing water
1272		supply standards of this Part do not apply to waters described in 35 Ill. Adm.
1273		Code 303.204 as the Chicago Area Waterway System or Lower Des Plaines River
1274		and listed in 35 Ill. Adm. Code 303.220 through 303.240, except that waters
1275		designated as Primary Contact Recreation Waters in 35 Ill. Adm. Code 303.220
1276		must meet the numeric water quality standard for bacteria applicable to protected

1277 waters in 35 Ill. Adm. Code 302.209. The Chicago River must meet the general 1278 use standards, including the numeric water quality standard for fecal coliform 1279 bacteria applicable to protected waters in 35 Ill. Adm. Code 302.209. 1280 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1281 1282 1283 Section 302.402 Purpose 1284 1285 The Chicago Area Waterway System and Lower Des Plaines River standards protect primary 1286 contact, incidental contact or non-contact recreational uses (except when designated as non-1287 recreational waters); commercial activity, including navigation and industrial water supply uses; 1288 and the highest quality aquatic life and wildlife that is attainable, limited only by the physical 1289 condition of these waters and hydrologic modifications to these waters. The numeric and 1290 narrative standards in this Part will assure the protection of the aquatic life, wildlife, human 1291 health, and recreational uses of the Chicago Area Waterway System and Lower Des Plaines 1292 River as those uses are defined in 35 Ill. Adm. Code 301 and designated in 35 Ill. Adm. Code 1293 303. Indigenous aquatic life standards are intended for the South Fork of the South Branch of the 1294 Chicago River (Bubbly Creek), which is capable of supporting an indigenous aquatic life limited 1295 only by the physical configuration of the body of water, characteristics and origin of the water 1296 and the presence of contaminants in amounts that do not exceed the water quality standards listed 1297 in this Subpart D. However, the Chicago River is required to meet the general use standard, 1298 including the water quality standard for fecal coliform bacteria applicable to protected waters in 1299 35 Ill. Adm. Code 302.209. 1300 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1301 1302 1303 Section 302.403 Unnatural Sludge 1304 1305 Waters subject to this subpart must be free from unnatural sludge or bottom deposits, floating 1306 debris, visible oil, odor, unnatural plant or algal growth, or unnatural color or turbidity. 1307 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1308 1309 1310 Section 302.404 pH 1311 1312 pH must be within the range of 6.5 to 9.0 except for natural causes, except for the South Fork of 1313 the South Branch of the Chicago River (Bubbly Creek) for which pH must be within the range of 6.0 to 9.0 except for natural causes. 1314 1315 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1316 1317 1318 Section 302.405 Dissolved Oxygen 1319 1320 Dissolved oxygen concentrations must not be less than the applicable values in subsections (a),

1321 1322	(b), (c), and (d).			
1322	a)	For th	e Soutl	h Fork of the South Branch of the Chicago River (Bubbly Creek),	
1323	aj		issolved oxygen concentrations must not be less than 4.0 mg/L at any time.		
1324		u15501	VCU UX	ygen concentrations must not be less than 4.0 mg/L at any time.	
1325	b)	For th	e Unne	er Dresden Island Pool Aquatic Life Use waters listed in 35 Ill. Adm.	
1320	0)		303.23	±	
1328		code	505.25		
1329		1)	durin	g the period of March through July:	
1330		-)	401111	g die period of Maren anough outj.	
1331			A)	6.0 mg/L as a daily mean averaged over 7 days; and	
1332)		
1333			B)	5.0 mg/L at any time; and	
1334			_,		
1335		2)	durin	g the period of August through February:	
1336					
1337			A)	5.5 mg/L as a daily mean averaged over 30 days;	
1338					
1339			B)	4.0 mg/L as a daily minimum averaged over 7 days; and	
1340					
1341			C)	3.5 mg/L at any time.	
1342	,	T 1	C1 ·		
1343	c)			ago Area Waterway System Aquatic Life Use A waters listed in 35	
1344		III. Ac	lm. Co	de 303.235:	
1345		1)	1 .		
1346		1)	durin	g the period of March through July, 5.0 mg/L at any time; and	
1347		2)	1.		
1348		2)	aurin	g the period of August through February:	
1349			A)	4.0 mg/L as a daily minimum avanaged even 7 days, and	
1350 1351			A)	4.0 mg/L as a daily minimum averaged over 7 days; and	
1351			D)	3.5 mg/L at any time.	
1352			B)	5.5 mg/L at any time.	
1353	d)	For th	e Chic	ago Area Waterway System and Brandon Pool Aquatic Life Use B	
1355	u)			in 35 Ill. Adm. Code 303.240:	
1355		water	5 IISteu	III 55 III. Adm. Code 505.240.	
1350		1)	$4.0 {\rm m}$	ng/L as a daily minimum averaged over 7 days; and	
1358		1)	1.0 11	ig is a dairy minimum avoragod ovor 7 days, and	
1359		2)	$3.5 \mathrm{m}$	ng/L at any time.	
1360		_)	0.0 11		
1361	e)	Asses	sing at	tainment of dissolved oxygen mean and minimum values.	
1362	-,	1 10000	"		
1363		1)	Dailv	mean is the arithmetic mean of dissolved oxygen concentrations in	
1364		,	-	onsecutive hours.	

1365		
1366	2)	Daily minimum is the minimum dissolved oxygen concentration in 24
1367	,	consecutive hours.
1368		
1369	3)) The measurements of dissolved oxygen used to determine attainment or
1370	,	lack of attainment with any of the dissolved oxygen standards in this
1371		Section must assure daily minima and daily means that represent the true
1372		daily minima and daily means.
1373		
1374	4)	The dissolved oxygen concentrations used to determine a daily mean or
1375	,	daily minimum should not exceed the air-equilibrated concentration.
1376		
1377	5)	"Daily minimum averaged over 7 days" means the arithmetic mean of
1378	c)	daily minimum dissolved oxygen concentrations in 7 consecutive 24-hour
1379		periods.
1380		periodel
1381	6)	"Daily mean averaged over 7 days" means the arithmetic mean of daily
1382	0)	mean dissolved oxygen concentrations in 7 consecutive 24-hour periods.
1383		
1384	7)	"Daily mean averaged over 30 days" means the arithmetic mean of daily
1385	• ,	mean dissolved oxygen concentrations in 30 consecutive 24-hour periods.
1380		
1386 1387	(Source:	Amended at 46 Ill. Reg. effective)
1387	(Source:	Amended at 46 Ill. Reg, effective)
1387 1388		
1387 1388 1389		Amended at 46 Ill. Reg, effective) Chemical Constituents
1387 1388 1389 1390	Section 302.407	Chemical Constituents
1387 1388 1389 1390 1391	Section 302.407 a) T	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must
1387 1388 1389 1390 1391 1392	Section 302.407 a) T	Chemical Constituents
1387 1388 1389 1390 1391 1392 1393	Section 302.407 a) T. no	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d).
1387 1388 1389 1390 1391 1392 1393 1394	Section 302.407 a) T no b) T	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e)
1387 1388 1389 1390 1391 1392 1393 1394 1395	Section 302.407 a) T b) T m	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) sust not be exceeded by the arithmetic average of at least four consecutive
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396	a) T no b) T sa	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) sust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397	a) T no b) T sa (c	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection l). The samples used to demonstrate attainment or lack of attainment with a CS
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398	a) T no b) T sa (d m	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) sust not be exceeded by the arithmetic average of at least four consecutive supples collected over any period of four days, except as provided in subsection l). The samples used to demonstrate attainment or lack of attainment with a CS sust be collected in a manner that assures an average representative of the
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399	a) T no b) T sa (c m sa sa sa sa	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) sust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS sust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	Section 302.407a)Tnob)Tmsa(d)msa <td>Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive umples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be</td>	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive umples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401	Section 302.407a)T.nob)T.msa(c)msasastca	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) sust not be exceeded by the arithmetic average of at least four consecutive imples collected over any period of four days, except as provided in subsection d). The samples used to demonstrate attainment or lack of attainment with a CS sust be collected in a manner that assures an average representative of the impling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402	Section 302.407a)Tndb)Tmsa(dmsa	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the me the sample was collected. To calculate attainment status of chronic
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	a) T no b) T m sa (c m sa st ca tin st	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) must not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS must be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the me the sample was collected. To calculate attainment status of chronic andards, the concentration of the chemical constituent in each sample is divided
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404	a) T no b) T m sa (c m sa ti st by	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the me the sample was collected. To calculate attainment status of chronic andards, the concentration of the chemical constituent in each sample is divided y the calculated water quality standard for the sample to determine a quotient.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405	a) T no b) T m sa (c m sa (c tit st by T	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive imples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the impling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the me the sample was collected. To calculate attainment status of chronic andards, the concentration of the chemical constituent in each sample is divided of the calculated water quality standard for the sample to determine a quotient. he water quality standard is attained if the mean of the sample quotients is less
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404	a) T no b) T m sa (c m sa (c tit st by T	Chemical Constituents he acute standard (AS) for the chemical constituents listed in subsection (e) must of be exceeded at any time except as provided in subsection (d). he chronic standard (CS) for the chemical constituents listed in subsection (e) nust not be exceeded by the arithmetic average of at least four consecutive amples collected over any period of four days, except as provided in subsection 1). The samples used to demonstrate attainment or lack of attainment with a CS nust be collected in a manner that assures an average representative of the ampling period. For the chemical constituents that have water quality based andards dependent upon hardness, the chronic water quality standard will be alculated according to subsection (e) using the hardness of the water body at the me the sample was collected. To calculate attainment status of chronic andards, the concentration of the chemical constituent in each sample is divided y the calculated water quality standard for the sample to determine a quotient.

- 1408c)The human health standard (HHS) for the chemical constituents listed in1409subsection (f) must not be exceeded, on a 12-month rolling average based on at1410least eight samples, collected in a manner representative of the sampling period,1411except as provided in subsection (d).14121412
 - d) In waters where mixing is allowed under 35 Ill. Adm. Code 302.102, the following apply:
 - 1) The AS must not be exceeded in any waters except for those waters for which a zone of initial dilution (ZID) applies under 35 Ill. Adm. Code 302.102.
 - 2) The CS must not be exceeded outside of waters in which mixing is allowed under 35 Ill. Adm. Code 302.102.
 - 3) The HHS must not be exceeded outside of waters in which mixing is allowed under 35 Ill. Adm. Code 302.102.
 - e) Numeric Water Quality Standards for the Protection of Aquatic Organisms

	AS	CS
Constituent	$(\mu g/L)$	$(\mu g/L)$
Arsenic	340 X 1.0*=340	150 X 1.0*=150
(trivalent, dissolved)		
Benzene	4200	860
Cadmium	$e^{A+B \ln(H)} X \{1.138672-$	$e^{A+B \ln(H)} X \{1.101672-$
(dissolved)	[(ln(H))(0.041838)]}*,	[(ln(H))(0.041838)]}*,
	where A=-2.918 and	where $A = -3.490$ and
	B=1.128	B=0.7852
Chromium	16	11
(hexavalent, total)		
Chromium (trivalent,	$e^{A+B\ln(H)} \ge 0.316^*,$	$e^{A+B \ln(H)} X 0.860*,$
dissolved)	where A=3.7256 and	where A=0.6848 and
	B=0.8190	B=0.8190
Copper	$e^{A+B \ln(H)} \ge 0.960*,$	$e^{A+B \ln(H)} \ge 0.960*,$
(dissolved)	where A=-1.645 and	where A=-1.646 and
	B=0.9422	B=0.8545
Cyanide**	22	10
Ethylbenzene	150	14
Fluoride (total)	$e^{A+B\ln(H)}$,	$e^{A+B \ln(H)}$, but must not
	where A=6.7319	exceed 4.0 mg/L,
	and B=0.5394	where <i>A</i> =6.0445 and
		<i>B</i> =0.5394

JCAR350302-2207052r01

	Lead	$e^{A+B \ln(H)} X \{1.46203-$	$e^{A+B \ln(H)} X \{1.46203-$
	(dissolved)	[(ln(H))(0.145712)]}*,	[(ln(H))(0.145712)]}*,
		where A=-1.301 and	where A=-2.863 and
		B=1.273	B=1.273
	Manganese	$e^{A+B\ln(H)} \ge 0.9812^*,$	$e^{A+B \ln(H)} X 0.9812^*,$
	(dissolved)	where <i>A</i> =4.9187	where <i>A</i> =4.0635
		and <i>B</i> =0.7467	and <i>B</i> =0.7467
	Mercury (dissolved)	1.4 X 0.85*=1.2	0.77 X 0.85*=0.65
	Nickel (dissolved)	$e^{A+B \ln(H)} X 0.998*,$	$e^{A+B \ln(H)} X 0.997*,$
		where A=0.5173 and	where A=-2.286 and
		B=0.8460	B=0.8460
	Toluene	2000	600
	TRC	19	11
	Xylene(s)	920	360
	Zinc (dissolved)	$e^{A+B \ln(H)} \ge 0.978*,$	$e^{A+B \ln(H)} \ge 0.986^*,$
		where A=0.9035 and	where A=-0.4456 and
		B=0.8473	B=0.8473
1428			
1429	where:		
1430			
	μg/L = microg	gram per liter	
	H = Hardne	ess concentration of receivin	g water in mg/L as CaCO ₃
	e^{x} = base of	f natural logarithms raised to	o the x-power
	ln(H) = natural	logarithm of Hardness in m	ng/L as CaCO ₃
	* = conver	sion factor multiplier for dis	solved metals
	approv Code 3 Flow I 2004, 1	njection, Ligand Exchange, Document Number EPA-821 able to Chlorination, Standar	y reference at 35 III. Adm. , DW: Available Cyanide by and Amperometry, January I-R-04-001 or Cyanide
1431			
1432 f)	Numeric Water Quality	Standard for the Protection of	of Human Health
1433	[
	Constituent	HHS (µg/L)	
	Benzene	310	
	Mercury (total)	0.012	
	• ` /	860,000	
1434		,	
1425	with a may		

1435 where:

1436 $\mu g/L = microgram per liter$ 1437 1438 Numeric Water Quality Standards for Other Chemical Constituents **g**) 1439 1440 1) Concentrations of the following chemical constituents must not be exceeded except in waters for which mixing is allowed under 35 Ill. Adm. 1441 1442 Code 302.102. 1443 Unit Standard Constituent Iron (dissolved) 1.0 mg/L Selenium (total) mg/L 1.0 $e^{A+B \ln(H)} \ge 0.85^*$, where Silver (dissolved) μg/L A=-6.52 and B=1.72 [1276.7+5.508(H)-Sulfate (where H is \geq 100 but \leq mg/L 500 and C is \ge 25 but \le 500) 1.457(C)] X 0.65 Sulfate (where H is \geq 100 but \leq [-57.478 + 5.79(H) + mg/L 54.163(C)] X 0.65 500 and C is \ge 5 but < 25) Sulfate (where H > 500 and C \geq mg/L 2,000 5) 1444 1445 where: 1446 milligram per liter mg/L = = microgram per liter μg/L Η = Hardness concentration of receiving water in mg/L as CaCO₃ С = Chloride concentration of receiving water in mg/L $e^{\mathbf{x}}$ base of natural logarithms raised to the x-power = ln(H) natural logarithm of Hardness in milligrams per liter = * conversion factor multiplier for dissolved metals = 1447 1448 2)

h)

JCAR350302-2207052r01

Beginning July 1, 2018, the following concentration for Chloride must not be exceeded except in waters for which mixing is allowed under 35 Ill. Adm. Code 302.102:

Constituent	Unit	Standard
Chloride	mg/L	500

where:

mg/L = milligram per liter

1456

1453 1454

1455

1449

1450

1451 1452

1457 1458

1459

1460

CONSTITUENT	CONCENTRATION (mg/L)
Ammonia Un-ionized (as N*)	0.1
Arsenic (total)	1.0
Barium (total)	5.0
Cadmium (total)	0.15
Chromium (total hexavalent)	0.3
Chromium (total trivalent)	1.0
Copper (total)	1.0
Cyanide (total)	0.10
Fluoride (total)	15.0
Iron (total)	2.0
Iron (dissolved)	0.5
Lead (total)	0.1
Manganese (total)	1.0
Mercury (total)	0.0005
Nickel (total)	1.0

Concentrations of other chemical constituents in the South Fork of the South

Branch of the Chicago River (Bubbly Creek) must not exceed the following

JCAR350302-2207052r01

Oil, fats and grease	15.0**
Phenols	0.3
Selenium (total)	1.0
Silver	1.1
Zinc (total)	1.0
Total Dissolved Solids	1500

* For purposes of this Section, the concentration of un-ionized ammonia must be computed according to the following equation:

$$U = \frac{N}{\left[0.94412\left(1+10^{x}\right)+0.0559\right]}$$

	$X = 0.09018 + \frac{2729.92 - pH}{(T + 273.16)}$
	U = Concentration of un-ionized ammonia as N in mg/L
	N = Concentration of ammonia nitrogen as N in mg/L
	T = Temperature in degrees Celsius
**	Oil must be analytically separated into polar and non-polar components if the total concentration exceeds 15 mg/L. In no case shall either of the components exceed

14731474(Source: Amended at 46 Ill. Reg., effective

1476 Section 302.408 Temperature

where:

1478a)For the South Fork of the South Branch of the Chicago River (Bubbly Creek),1479temperature must not exceed 34 °C (93 °F) more than 5% of the time, or 37.8 °C1480(100 °F) at any time.1481

15 mg/L (i.e., 15 mg/L polar materials and 15 mg/L non-polar materials).

1482b)The temperature standards in subsections (c) through (i) will become applicable1483beginning July 1, 2018. Starting July 1, 2015, the waters designated at 35 Ill.1484Adm. Code 303 as Chicago Area Waterway System Aquatic Life Use A, Chicago1485Area Waterway System and Brandon Pool Aquatic Life Use B, and Upper1486Dresden Island Pool Aquatic Life Use must not exceed temperature of 34 °C (931487°F) more than 5% of the time, or 37.8 °C (100 °F) at any time.

1488 1489 c) There must not be abnormal temperature changes that may adversely affect 1490 aquatic life unless caused by natural conditions. 1491 1492 d) The normal daily and seasonal temperature fluctuations that existed before the addition of heat due to other than natural causes must be maintained. 1493 1494 1495 e) The maximum temperature rise above natural temperatures must never exceed 2.8 °C (5 °F). 1496 1497 1498 f) Water temperature at representative locations in the main river must never exceed 1499 the maximum limits in the applicable table in subsections (g), (h) and (i), during 1500 more than one percent of the hours in the 12-month period ending with any 1501 month. The water temperature must not exceed the maximum limits in the applicable table that follows by more than $1.7 \degree C (3.0 \degree F)$. 1502 1503 1504 Water temperature in the Chicago Area Waterway System Aquatic Life Use A g) 1505 waters listed in 35 Ill. Adm. Code 303.235 must not exceed the limits in the 1506 following table in compliance with subsection (f): 1507

Months	Daily Maximum	
	(° C)	(° F)
January	16	60
February	16	60
March	16	60
April	32	90
May	32	90
June	32	90
July	32	90
August	32	90
September	32	90
October	32	90
November	32	90
December	16	60

1508 1509 1510

1511

1512

h) Water temperature in the Chicago Area Waterway System and Brandon Pool Aquatic Life Use B waters listed in 35 Ill. Adm. Code 303.240 must not exceed the limits in the following table in compliance with subsection (f):

Months	Daily Maximum
--------	------------------

JCAR350302-2207052r01

	(° C)	(° F)
January	16	60
February	16	60
March	16	60
April	32	90
May	32	90
June	32	90
July	32	90
August	32	90
September	32	90
October	32	90
November	32	90
December	16	60

1513 1514 1515 1516 1517

i) Water temperature for the Upper Dresden Island Pool Aquatic Life Use waters, as defined in 35 Ill. Adm. Code 303.230, must not exceed the limits in the following table in compliance with subsection (f):

Months		Daily Maximum		
	(° C)	(° F)		
January	16	60		
February	16	60		
March	16	60		
April	32	90		
May	32	90		
June	32	90		
July	32	90		
August	32	90		
September	32	90		
October	32	90		
November	32	90		
December	16	60		

1518

1519 (Source: Amended at 46 Ill. Reg. ____, effective _____)

1520

1521 Section 302.409 Cyanide for the South Fork of the South Branch of the Chicago River1522 (Bubbly Creek)

1522

1524 Cyanide (total) must not exceed 0.10 mg/L in the South Fork of the South Branch of the Chicago

1525 River (Bubbly Creek).

1526							
1527	(Sour	ce: Am	ended at 46 Ill. Reg., effective)				
1528	× ×						
1529	Section 302.410 Other Toxic Substances						
1530							
1531	Any substance	ce or con	mbination of substances toxic to aquatic life not listed in Section 302.407				
1532	must not exceed one-half of the 96-hour median tolerance limit (96-hour TL _m) for native fish or						
1533	essential fish food organisms in the South Fork of the South Branch of the Chicago River						
1534	(Bubbly Cree	ek). All	other Chicago Area Waterway System and Lower Des Plaines River waters				
1535	as designated	l in 35 I	11. Adm. Code 303 must be free from any substances or combination of				
1536	-		trations toxic or harmful to human health, or to animal, plant or aquatic life.				
1537	Individual ch	emical	substances or parameters for which numeric standards are specified in this				
1538			ect to this Section.				
1539	-						
1540	a)	Any s	substance or combination of substances will be deemed to be toxic or				
1541	,	•	ful to aquatic life if present in concentrations that exceed the following:				
1542							
1543		1)	An Acute Aquatic Toxicity Criterion (AATC) validly derived and				
1544			correctly applied under procedures in 35 Ill. Adm. Code 302.612 through				
1545			302.618 or in 35 Ill. Adm. Code 302.621; or				
1546							
1547		2)	A Chronic Aquatic Toxicity Criterion (CATC) validly derived and				
1548			correctly applied under procedures in 35 Ill. Adm. Code 302.627 or				
1549			302.630.				
1550							
1551	b)	Any s	substance or combination of substances will be deemed to be toxic or				
1552		harmf	ful to wild or domestic animal life if present in concentrations that exceed				
1553		any Wild and Domestic Animal Protection Criterion (WDAPC) validly derived					
1554		and correctly applied under 35 Ill. Adm. Code 302.633.					
1555							
1556	c)	Any s	substance or combination of substances will be deemed to be toxic or				
1557		harmf	ful to human health if present in concentrations that exceed criteria, validly				
1558		derive	ed and correctly applied, based on either of the following:				
1559							
1560		1)	Disease or functional impairment due to a physiological mechanism for				
1561			which there is a threshold dose below which no damage occurs calculated				
1562			under 35 Ill. Adm. Code 302.642 through 302.648 (Human Threshold				
1563			Criterion); or				
1564							
1565		2)	Disease or functional impairment due to a physiological mechanism for				
1566			which any dose may cause some risk of damage calculated under 35 Ill.				
1567			Adm. Code 302.651 through 302.658 (Human Nonthreshold Criterion).				
1568							

- 1569d)The most stringent criterion of subsections (a), (b) and (c) applies at all points1570outside of any waters within which, mixing is allowed under 35 Ill. Adm. Code1571302.102. In addition, the AATC derived under subsection (a)(1) applies in all1572waters except that it must not apply within a ZID that is prescribed in compliance1573with 35 Ill. Adm. Code 302.102.15741575e)The procedures of Subpart F set forth minimum data requirements, appropriate
- test protocols, and data assessment methods for establishing criteria under subsections (a), (b) and (c). No other procedures may be used to establish such criteria unless approved by the Board in a rulemaking or adjusted standard proceeding under Title VII of the Act. The validity and applicability of the Subpart F procedures may not be challenged in any proceeding brought under Title VIII or X of the Act, although the validity and correctness of application of the numeric criteria derived under Subpart F may be challenged in the proceedings under subsection (f).

f) Agency derived criteria may be challenged as follows:

- 1) A permittee may challenge the validity and correctness of application of a criterion derived by the Agency under this Section only at the time the criterion is first applied in an NPDES permit under 35 Ill. Adm. Code 309.152 or in an action under Title VIII of the Act for violation of the toxicity water quality standard. Failure of a person to challenge the validity of a criterion at the time of its first application constitutes a waiver of the challenge in any subsequent proceeding involving application of the criterion to that person.
- 2) Consistent with subsection (f)(1), if a criterion is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion in a permit appeal under Section 40 of the Act and 35 Ill. Adm. Code 309.181. In any such action, the Agency must include in the record all information upon which it has relied in developing and applying the criterion, whether that information was developed by the Agency or submitted by the Petitioner. The burden of proof is on the Petitioner to demonstrate that the criterion-based condition is not necessary to accomplish the purposes of subsection (f)(1) (see Section 40(a)(1) of the Act), but there is no presumption in favor of the general validity and correctness of the application of the criterion as reflected in the challenged condition.
- 16093)Consistent with subsection (f)(1), in an action in which alleged violation1610of the toxicity water quality standard is based on alleged excursion of a1611criterion, the person bringing the action has the burdens of going forward

1st Notice JCAR350302-2207052r01 1612 with proof and of persuasion regarding the general validity and correctness 1613 of application of the criterion. 1614 1615 Subsections (a) through (e) do not apply to USEPA registered pesticides approved **g**) 1616 for aquatic application and applied under the following conditions: 1617 1618 1) Application must be made in strict compliance with label directions; 1619 1620 2) Applicator must be properly certified under the provisions of the Federal 1621 Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972)); 1622 and 1623 1624 3) Applications of aquatic pesticides must comply with the laws, regulations 1625 and guidelines of all state and federal agencies authorized by law to 1626 regulate, use or supervise pesticide applications. 1627 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1628 1629 1630 Section 302.412 Total Ammonia Nitrogen 1631 1632 a) This Section does not apply to the South Fork of the South Branch of the Chicago 1633 River (Bubbly Creek). 1634 1635 b) For the Chicago Area Waterway System and the Lower Des Plaines River 1636 described in 35 Ill. Adm. Code 303.204 and listed in 35 Ill. Adm. Code 303.220 1637 through 303.240, total ammonia nitrogen must in no case exceed 15 mg/L. 1638 1639 The total ammonia nitrogen acute, chronic, and sub-chronic standards are c) 1640 determined in compliance with the equations in subsections (c)(1) and (c)(2). 1641 Attainment of each standard must be determined in compliance with subsections 1642 (d) and (e) in mg/L. 1643 1644 1) The acute standard (AS) is calculated using the following equation: 1645 $AS = \frac{0.411}{1 + 10^{7.204 - pH}} + \frac{58.4}{1 + 10^{pH - 7.204}}$ 1646 1647 1648 The chronic standard (CS) is calculated using the following equations: 2) 1649 1650 A) During the Early Life Stage Present period, as defined in 1651 subsection (f):

1652 1653

i) When water temperature is less than or equal to 14.51 °C:

JCAR350302-2207052r01

1654				
				$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (2.85)$
1.655				(2.85) $\frac{1}{1+10^{7.688-pH}}$ $+ \frac{1}{1+10^{pH-7.688}}$ (2.85)
1655 1656				
			::)	When mater to me notice is allows 14,51,90
1657			ii)	When water temperature is above 14.51 °C:
1658				
				$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} \left(1.45 * 10^{0.028 * (25-T)} \right)$
1659				$\left(1+10^{7.688-pH}+1+10^{pH-7.688}\right)^{(1110-10)}$
1660				
1661				where:
1662				where.
1002				T = Water Temperature, degrees Celsius
1663				i Water remperature, degrees censius
1664			B) Durin	g the Early Life Stage Absent period, as defined in
1665			/	ction (f):
1666			54050	
1667			i)	When water temperature is less than or equal to 7 °C:
1668			1)	when water temperature is less than or equal to 7 °C.
1008				
				$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} \left(1.45 \times 10^{0.504} \right)$
1669				$(1+10^{7.688-pH})$ $(1+10^{pH-7.688})$
1670				
1671			ii)	When water temperature is greater than 7 °C:
1672)	1 8
				$\begin{bmatrix} 0.0577 & 2.487 \end{bmatrix}$ (0.029(25.73)
				$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} \left(1.45 * 10^{0.028(25-T)} \right)$
1673				
1674				
1675				Where:
1676				
				T = Water Temperature, degrees Celsius
1677		a `	ment of a	
1678		3)	The sub-chro	nic standard is equal to 2.5 times the chronic standard.
1679				
1680	d)	Attair	nment of the To	tal Ammonia Nitrogen Water Quality Standards
1681				
1682		1)		ndard for total ammonia nitrogen (in mg/L) must not be
1683				ny time except in those waters for which the Agency has
1684			approved a Z	ID under 35 Ill. Adm. Code 302.102.
1685				
1686		2)	The 30-day a	verage concentration of total ammonia nitrogen (in mg/L)
1687			must not exce	eed the chronic standard (CS) except in those waters in which
1688			mixing is allo	owed under 35 Ill. Adm. Code 302.102. Attainment of the

1689		chronic standard (CS) is determined in compliance with subsection (e) by				
1690		averaging at least four samples collected at weekly intervals or at other				
1691		sampling intervals that statistically represent a 30-day sampling period.				
1692		The samples must be collected in a manner that assures a representative				
1693		sampling period.				
1694		sampning period.				
1695		2) The 4 day even as concentration of total emmonic mitroscon (in m_{2}/I)				
		3) The 4-day average concentration of total ammonia nitrogen (in mg/L)				
1696		must not exceed the sub-chronic standard except in those waters in which				
1697		mixing is allowed under 35 Ill. Adm. Code 302.102. Attainment of the				
1698		sub-chronic standard is determined in compliance with subsection (e) by				
1699		averaging daily sample results collected over a period of four consecutive				
1700		days within the 30-day averaging period. The samples must be collected				
1701		in a manner that assures a representative sampling period.				
1702						
1703	e)	The water quality standard for each water body must be calculated based on the				
1704		temperature and pH of the water body measured at the time of each ammonia				
1705		sample. The concentration of total ammonia in each sample must be divided by				
1706		the calculated water quality standard for the sample to determine a quotient. The				
1707		water quality standard is attained if the mean of the sample quotients is less than				
1708		or equal to one for the duration of the averaging period.				
1709		er er nær te ente for and annanter er and av er øgnig person				
1710	f)	The Early Life Stage Present period occurs from March through October. All				
1711	1)	other periods are subject to the Early Life Stage Absent period, except that waters				
1712		listed in 35 Ill. Adm. Code 303.240 are not subject to Early Life Stage Present				
1712		ammonia limits at any time.				
1713						
	DOAT	DNOTE. A suite and sharen is standard concentrations for total surrousis situation				
1715	BOARD NOTE: Acute and chronic standard concentrations for total ammonia nitrogen					
1716	(in mg/L) for different combinations of pH and temperature are shown in Appendix C.					
1717	(5					
1718	(Sourc	ee: Amended at 46 Ill. Reg, effective)				
1719						
1720	SUB	PART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS				
1721						
1722	Section 302.5	01 Scope, Applicability, and Definitions				
1723						
1724	a)	Subpart E contains the Lake Michigan Basin water quality standards. These must				
1725		be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm.				
1726		Code 303.443.				
1727						
1728	b)	In addition to the definitions provided at 35 Ill. Adm. Code 301.200 through				
1729	,	301.444, and in place of conflicting definitions at 35 Ill. Adm. Code 302.100, the				
1730		following terms have the meanings specified for the Lake Michigan Basin:				
1731						
1732		"Acceptable daily exposure" or "ADE" means an estimate of the				

	<u>1st Notice</u>	JCAR350302-2207052r01
1733 1734 1735 1736		maximum daily dose of a substance that is not expected to result in adverse noncancer effects to the general human population, including sensitive subgroups.
1737 1738 1739 1740 1741		"Acceptable endpoints", for the purpose of deriving wildlife criteria, means acceptable subchronic and chronic endpoints that affect reproductive or developmental success, organismal viability or growth, or any other endpoint that is, or is directly related to, parameters that influence population dynamics.
1742 1743 1744 1745 1746		"Acute to chronic ratio" or "ACR" is the standard measure of the acute toxicity of a material divided by an appropriate measure of the chronic toxicity of the same material under comparable conditions.
1747 1748 1749		"Acute toxicity" means adverse effects that result from an exposure period that is a small portion of the life span of the organism.
1750 1751 1752 1753 1754		"Adverse effect" means any deleterious effect to organisms due to exposure to a substance. This includes effects that are or may become debilitating, harmful or toxic to the normal functions of the organism, but does not include non-harmful effects such as tissue discoloration alone or the induction of enzymes involved in the metabolism of the substance.
1755 1756 1757 1758 1759 1760		"Baseline BAF" for organic chemicals, means a BAF that is based on the concentration of freely dissolved chemical in the ambient water and takes into account the partitioning of the chemical within the organism; for inorganic chemicals, a BAF is based on the wet weight of the tissue.
1761 1762 1763 1764 1765		"Baseline BCF" for organic chemicals, means a BCF that is based on the concentration of freely dissolved chemical in the ambient water and takes into account the partitioning of the chemical within the organism; for inorganic chemicals, a BAF is based on the wet weight of the tissue.
1766 1767 1768 1769 1770 1771 1772		"Bioaccumulative chemical of concern" or "BCC" is any chemical that has the potential to cause adverse effects and that, upon entering the surface waters, by itself or as its toxic transformation product, accumulates in aquatic organisms by a human health bioaccumulation factor greater than 1,000, after considering metabolism and other physiochemical properties that might enhance or inhibit bioaccumulation, in compliance with the methodology in 35 Ill. Adm. Code 302.570. In addition, the half life of
1773 1774 1775 1776		the chemical in the water column, sediment or biota must be greater than eight weeks. BCCs include the following substances: Chlordane

1 7 7 7	
1777	4 4 DDD: a al DDD: 4 4 TDE: a al TDE
1778 1779	4,4'-DDD; p,p'-DDD; 4,4'-TDE; p,p'-TDE
1780	4,4'-DDE; p,p'-DDE
1781	ч, ч-дде, p,p-дде
1782	4,4'-DDT; p,p'-DDT
1783	i, i DD1, p, p DD1
1784	Dieldrin
1785	
1786	Hexachlorobenzene
1787	
1788	Hexachlorobutadiene; Hexachloro-1,3-butadiene
1789	
1790	Hexachlorocyclohexanes; BHCs
1791	
1792	alpha-Hexachlorocyclohexane; alpha-BHC
1793	
1794	beta-Hexachlorocyclohexane; beta-BHC
1795	
1796	delta-Hexachlorocyclohexane; delta-BHC
1797	
1798	Lindane; gamma-Hexachlorocyclohexane; gamma-BHC
1799	
1800	Mercury
1801	
1802	Mirex
1803 1804	Octachlorostyrene
1805	Octaeniolostylene
1805	PCBs; polychlorinated biphenyls
1807	r CDs, poryemormated orphenyis
1808	Pentachlorobenzene
1809	
1810	Photomirex
1811	
1812	2,3,7,8-TCDD; Dioxin
1813	
1814	1,2,3,4-Tetrachlorobenzene
1815	
1816	1,2,4,5-Tetrachlorobenzene
1817	
1818	Toxaphene
1819	
1820	"Bioaccumulation" is the net accumulation of a substance by an organism

1821	as a result of uptake from all environmental sources.
1822	
1823	"Bioaccumulation factor" or "BAF" is the ratio (in L/kg) of a substance's
1824	concentration in the tissue of an aquatic organism to its concentration in
1825	the ambient water, in situations where both the organism and its food are
1826	exposed and the ratio does not change substantially over time.
1827	
1828	"Bioconcentration" means the net accumulation of a substance by an
1829	aquatic organism as a result of uptake directly from the ambient water
1830	through gill membranes or other external body surfaces.
1831	
1832	"Bioconcentration Factor" or "BCF" is the ratio (in L/kg) of a substance's
1833	concentration in the tissue of an aquatic organism to its concentration in
1834	the ambient water, in situations where the organism is exposed through the
1835	water only and the ratio does not change substantially over time.
1836	
1837	"Biota-sediment accumulation factor" or "BSAF" means the ratio (in kg of
1838	organic carbon/kg of lipid) of a substance's lipid-normalized concentration
1839	in the tissue of an aquatic organism to its organic carbon-normalized
1840	concentration in surface sediment, in situations where the ratio does not
1841	change substantially over time, both the organism and its food are
1842	exposed, and the surface sediment is representative of average surface
1843	sediment in the vicinity of the organism.
1844	
1845	"Carcinogen" means a substance that causes an increased incidence of
1846	benign or malignant neoplasms, or substantially decreases the time to
1847	develop neoplasms, in animals or humans. The classification of
1848	carcinogens is determined by the procedures in Section II.A of Appendix
1849	C to 40 CFR 132, incorporated by reference in 35 Ill. Adm. Code 301.106.
1850	
1851	"Chronic effect" means an adverse effect that is measured by assessing an
1852	acceptable endpoint, and results from continual exposure over several
1853	generations, or at least over a significant part of the test species' projected
1854	life span or life stage.
1855	me span of me stage.
1856	"Chronic toxicity" means adverse effects that result from an exposure
1857	period that is a large portion of the life span of the organism.
1858	period that is a faige portion of the fife span of the organism.
1859	"Dissolved organic carbon" or "DOC" means organic carbon that passes
1860	through a 1 μ m pore size filter.
1861	anough a 1 phil poie the inter.
1862	"Dissolved metal" means the concentration of a metal that will pass
1863	through a 0.45 μ m pore size filter.
1864	
1001	

	<u>1st Notice</u>	JCAR350302-2207052r01
1865 1866 1867		"Food chain" means the energy stored by plants is passed along through the ecosystem through trophic levels in a series of steps of eating and being eaten, also known as a food web.
1868 1869 1870 1871		"Food chain multiplier" or "FCM" means the ratio of a BAF to an appropriate BCF.
1871 1872 1873 1874		"Linearized multi-stage model" means a mathematical model for cancer risk assessment. This model fits linear dose-response curves to low doses. It is consistent with a no-threshold model of carcinogenesis.
1875 1876 1877 1878		"Lowest observed adverse effect level" or "LOAEL" means the lowest tested dose or concentration of a substance that results in an observed adverse effect in exposed test organisms when all higher doses or
1879 1880 1881 1882		concentrations result in the same or more severe effects. "No observed adverse effect level" or "NOAEL" means the highest tested dose or concentration of a substance that results in no observed adverse
1882 1883 1884 1885		effect in exposed test organisms where higher doses or concentrations result in an adverse effect.
1886 1887 1888 1889 1890 1891		"Octanol water partition coefficient" or "Kow" is the ratio of the concentration of a substance in the n-octanol phase to its concentration in the aqueous phase in an equilibrated two-phase octanol water system. For log Kow, the log of the octanol water partition coefficient is a base 10 logarithm.
1891 1892 1893 1894 1895 1896		"Open Waters of Lake Michigan" means all of the waters within Lake Michigan in Illinois jurisdiction lakeward from a line drawn across the mouth of tributaries to Lake Michigan, but not including waters enclosed by constructed breakwaters.
1890 1897 1898 1899		"Particulate organic carbon" or "POC" means organic carbon that is retained by a 1 μ m pore size filter.
1900 1901 1902 1903		"Relative source contribution" or "RSC" means the percent of total exposure that can be attributed to surface water through water intake and fish consumption.
1903 1904 1905 1906 1907 1908		"Resident or indigenous species" means species that currently live a substantial portion of their life cycle, or reproduce, in a given body of water, or that are native species whose historical range includes a given body of water.

1909 1910 1911 1912 1913	"Risk associated dose" or "RAD" means a dose of a known or presumed carcinogenic substance in mg/kg/day which, over a lifetime of exposure, is estimated to be associated with a plausible upper bound incremental cancer risk equal to one in 100,000.
1913 1914 1915 1916 1917 1918	"Slope factor" or " q_1 *" is the incremental rate of cancer development calculated through use of a linearized multistage model or other appropriate model. It is expressed in mg/kg/day of exposure to the chemical in question.
1919 1920 1921 1922	"Standard Methods" means "Standard Methods for the Examination of Water and Wastewater", available from the American Public Health Association.
1923 1924 1925 1926	"Subchronic effect" means an adverse effect, measured by assessing an acceptable endpoint, resulting from continual exposure for a period of time less than that deemed necessary for a chronic test.
1927 1928 1929 1930	"Target species" is a species to be protected by the criterion. "Target species value" is the criterion value for the target species.
1931 1932 1933 1934	"Test species" is a species that has test data available to derive a criterion. "Test dose" or "TD" is a LOAEL or NOAEL for the test species.
1935 1936 1937 1938 1939	"Tier I criteria" are numeric values derived by use of the Tier I methodologies that either have been adopted as numeric criteria into a water quality standard or are used to implement narrative water quality criteria.
1940 1941 1942 1943	"Tier II values" are numeric values derived by use of the Tier II methodologies that are used to implement narrative water quality criteria. They are applied as criteria, have the same effect, and subject to the same appeal rights as criteria.
1944 1945 1946 1947 1948	"Trophic level" means a functional classification of taxa within a community that is based on feeding relationships. For example, aquatic green plants and herbivores comprise the first and second trophic levels in a food chain.
1949 1950 1951 1952	"Toxic unit acute" or "TU _a " is the reciprocal of the effluent concentration that causes 50 percent of the test organisms to die by the end of the acute exposure period, which is 48 hours for invertebrates and 96 hours for

1953	vertebrates.				
1954					
1955	"Toxic unit chronic" or "TU _c " is the reciprocal of the effluent				
1956	concentration that causes no observable effect on the test organisms by the				
1957	end of the chronic exposure period, which is at least seven days for				
1958	Ceriodaphnia, fathead minnow and rainbow trout.				
1959					
1960	"Uncertainty factor" or "UF" is one of several numeric factors used in				
1961	deriving criteria from experimental data to account for the quality or				
1962	quantity of the available data.				
1963					
1964	"USEPA" means United States Environmental Protection Agency.				
1965					
1966	(Source: Amended at 46 Ill. Reg, effective)				
1967					
1968	Section 302.502 Dissolved Oxygen				
1969					
1970	Dissolved oxygen must not be less than 90% of saturation, except due to natural causes, in the				
1971	Open Waters of Lake Michigan as defined at 35 Ill. Adm. Code 302.501. The other waters of the				
1972	Lake Michigan Basin must not be less than 6.0 mg/L during at least 16 hours of any 24 hour				
1973	period, nor less than 5.0 mg/L at any time.				
1974					
1975	(Source: Amended at 46 Ill. Reg, effective)				
1976					
1977	Section 302.503 pH				
1978					
1979	pH must be within the range of 7.0 to 9.0, except for natural causes, in the Open Waters of Lake				
1980	Michigan as defined at 35 Ill. Adm. Code 302.501. Other waters of the Basin must be within the				
1981	range of 6.5 to 9.0, except for natural causes.				
1982	(Common Among to tot AC III Dog offersting)				
1983	(Source: Amended at 46 Ill. Reg, effective)				
1984 1985	Section 302.504 Chemical Constituents				
1985	Section 502.504 Chemical Constituents				
1980 1987	The following concentrations of chemical constituents must not be exceeded, except as provided				
1987					
1988	in 35 Ill. Adm. Code 302.102 and 302.530:				
1989	a) The following standards must be met in all waters of the Lake Michigan Basin.				
1990	Acute aquatic life standards (AS) must not be exceeded at any time except for				
1991	those waters for which the Agency has approved a zone of initial dilution (ZID)				
1992	under 35 Ill. Adm. Code 302.102 and 302.530. Chronic aquatic life standards				
1995 1994	(CS) and human health standards (HHS) must not be exceeded outside of waters				
1994	in which mixing is allowed under 35 Ill. Adm. Code 302.102 and 302.530 by the				
	-				
1996	arithmetic average of at least four consecutive samples collected over a period of				

JCAR350302-2207052r01

at least four days. The samples used to demonstrate compliance with the CS or HHS must be collected in a manner which assures an average representation of the sampling period.

Constituent	<u>Unit</u>	AS	<u>CS</u>	<u>HHS</u>
Arsenic (Trivalent, dissolved)	μg/L	340×1.0* = 340	148 x 1.0*=148	NA
Boron (total)	mg/L	40.1	7.6	NA
Cadmium (dissolved)	μg/L	$\exp[A + B1n(H)] \times \\ \{1.138672 - [(1nH) \\ (0.041838)]\}^*$	$\exp[A + B1n(H)] \times \\ \{1.101672 - [(1nH) \\ (0.041838)]\}^*$	NA
		where $A = -3.6867$ and $B = 1.128$	where $A = -2.715$ and $B = 0.7852$	
Chromium (Hexavalent, total)	μg/L	16	11	NA
Chromium (Trivalent,	μg/L	$\exp[A + B\ln(H)] \times 0.316*$	$\exp[A + B1n(H)] \times 0.860*$	NA
dissolved)		where $A = 3.7256$ and $B = 0.819$	where $A = 0.6848$ and $B = 0.819$	
Copper (dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.960^{*}$	$\exp[A + B1n(H)] \times 0.960*$	NA
		where $A = -1.700$ and $B = 0.9422$	where $A = -1.702$ and $B = 0.8545$	
Cyanide**	μg/L	22	5.2	NA
Fluoride (total)	μg/L	$\exp[A + B1n(H)]$ where $A = 6.7319$ and $B = 0.5394$	exp[A + Bln(H)], but must not exceed 4.0 mg/L where A = 6.0445 and B = 0.5394	NA

JCAR350302-2207052r01

Lead (dissolved)	μg/L	$\exp[A + B1n(H)] \times \{1.46203 - [(1nH) \\ (0.145712)]\}^*$	$\exp[A + B1n(H)] \times \\ \{1.46203 - [(1nH) \\ (0.145712)]\}^*$	NA
		where $A = -1.055$ and $B = 1.273$	where A = -4.003 and B = 1.273	
Manganese (dissolved)	μg/L	$\exp[A+B\ln(H)]\times$ 0.9812*	$\exp[A + B1n(H)] \times 0.9812*$	NA
		where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Nickel (dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.998*$	$\exp[A + B1n(H)] \times 0.997*$	NA
		where $A = 2.255$ and $B = 0.846$	where $A = 0.0584$ and $B = 0.846$	
Selenium (dissolved)	μg/L	NA	5.0	NA
TRC	μg/L	19	11	NA
Zinc (dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.978*$	$\exp[A + B1n(H)] \times 0.986*$	NA
		where $A = 0.884$ and $B = 0.8473$	where $A = 0.884$ and $B = 0.8473$	
Benzene	µg/L	3900	800	310
Chlorobenzene	mg/L	NA	NA	3.2
2.4-Dimethylphenol	mg/L	NA	NA	8.7
2,4-Dinitrophenol	mg/L	NA	NA	2.8
Endrin	μg/L	0.086	0.036	NA
Ethylbenzene	μg/L	150	14	NA

JCAR350302-2207052r01

Hexachloroethane	μg/L	NA	NA	6.7
Methylene chloride	mg/L	NA	NA	2.6
Parathion	μg/L	0.065	0.013	NA
Pentachlorophenol	μg/L	$\exp B([pH]+A)$	$\exp B([pH] + A)$	NA
		where $A = -4.869$ and $B = 1.005$	where $A = -5.134$ and $B = 1.005$	
Toluene	μg/L	2000	610	51.0
Trichloroethylene	μg/L	NA	NA	370
Xylene(s)	µg/L	1200	490	NA

2001

2002 2003

2004

2005

2006

NA	=	Not Applied
exp[x]	=	base of natural logarithms raised to the x-power
ln(H)	=	natural logarithm of Hardness in mg/L as CaCO3

where:

- * = conversion factor multiplier for dissolved metals
- ** = standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3).
- b) The following water quality standards must not be exceeded at any time in any waters of the Lake Michigan Basin, unless a different standard is specified under subsection (c).

Constituent		Unit	Water Quality Standard
Barium (total)	01007	mg/L	5.0
Chloride (total)		mg/L	500
Iron (dissolved)		mg/L	1.0

JCAR350302-2207052r01

Phenols	mg/L	0.1
Sulfate	mg/L	500
Total Dissolved Solids	mg/L	1000

c) In addition to the standards specified in subsections (a) and (b), the following standards must not be exceeded at any time in the Open Waters of Lake Michigan as defined in Section 302.501.

Constituent	Unit	Water Quality Standard
Arsenic (total)	μg/L	50.0
Boron (total)	mg/L	1.0
Barium (total)	mg/L	1.0
Chloride (total)	mg/L	12.0
Fluoride (total)	mg/L	1.4
Iron (dissolved)	mg/L	0.30
Lead (total)	μg/L	50.0
Manganese (total)	mg/L	0.15
Nitrate-Nitrogen	mg/L	10.0
Phosphorus	μg/L	7.0
Selenium (total)	μg/L	10.0
Sulfate	mg/L	24.0
Total Dissolved Solids	mg/L	180.0
Oil (hexane solubles or equivalent)	mg/L	0.10
Phenols	μg/L	1.0

d) In addition to the standards specified in subsections (a), (b) and (c), the following human health standards (HHS) must not be exceeded in the Open Waters of Lake Michigan as defined in Section 302.501 by the arithmetic average of at least four consecutive samples collected over a period of at least four days. The samples used to demonstrate compliance with the HHS must be collected in a manner which assures an average representation of the sampling period.

Constituent	<u>Unit</u>	Water Quality Standard
Benzene	μg/L	12.0
Chlorobenzene	μg/L	470.0
2,4-Dimethylphenol	μg/L	450.0
2,4-Dinitrophenol	μg/L	55.0
Hexachloroethane (total)	μg/L	5.30
Lindane	μg/L	0.47
Methylene chloride	μg/L	47.0
Trichloroethylene	μg/L	29.0

e) For the following bioaccumulative chemicals of concern (BCCs), acute aquatic life standards (AS) must not be exceeded at any time in any waters of the Lake Michigan Basin and chronic aquatic life standards (CS), human health standards (HHS), and wildlife standards (WS) must not be exceeded in any waters of the Lake Michigan Basin by the arithmetic average of at least four consecutive samples collected over a period of at least four days subject to the limitations of 35 Ill. Adm. Code 302.520 and 302.530. The samples used to demonstrate compliance with the HHS and WS must be collected in a manner that assures an average representation of the sampling period.

Constituent	<u>Unit</u>	<u>AS</u>	<u>CS</u>	HHS	<u>WS</u>
Mercury (total)	ng/L	1,700	910	3.1	1.3
Chlordane	ng/L	NA	NA	0.25	NA
DDT and metabolites	pg/L	NA	NA	150	11.0
Dieldrin	ng/L	240	56	0.0065	NA
Hexachlorobenzene	ng/L	NA	NA	0.45	NA
Lindane	μg/L	0.95	NA	0.5	NA
PCBs (class)	pg/L	NA	NA	26	120
2,3,7,8-TCDD	fg/L	NA	NA	8.6	3.1
Toxaphene	pg/L	NA	NA	68	NA

where:

		mg/L = milligrams per liter (10-3 grams per liter)						
		$\mu g/L$ = micrograms per liter (10 ⁻⁶ grams per liter)						
		ng/L = nanograms per liter (10 ⁻⁹ grams per liter)						
		$pg/L = picograms per liter (10^{-12} grams per liter)$						
		fg/L = femtograms per liter (10 ⁻¹⁵ grams per liter)						
		NA = Not Applied						
2032		107 Not Applied						
2033	(Sour	ce: Amended at 46 Ill. Reg, effective)						
2034 2035	Section 302.4	505 Fecal Coliform						
2036								
2037		inimum of five samples taken over not more than a 30-day period, fecal coliform						
2038		eed a geometric mean of 20 per 100 ml in the Open Waters of Lake Michigan as						
2039		Ill. Adm. Code 302.501. The remaining waters of the Lake Michigan Basin must						
2040		geometric mean of 200 per 100 ml, nor shall more than 10% of the samples during						
2041	any 50 day pe	eriod exceed 400 per 100 ml.						
2042	(Carrow	Amondad at 16 III Dag						
2043 2044	(Source: Amended at 46 Ill. Reg, effective)							
2044	Section 302 4	506 Temperature						
2046	Section 002.	soo remperature						
2047	a)	The owner or operator of a source of heated effluent must maintain such records						
2048)	and conduct such studies of the effluents from the source and its effects as may be						
2049		required by the Agency or in any permit granted under the Act.						
2050								
2051	b)	Backfitting of alternative cooling facilities will be required if, upon complaint						
2052	,	filed in compliance with Board rules, it is found at any time that any heated						
2053		effluent causes significant ecological damage to the Lake.						
2054								
2055	(Sour	ce: Amended at 46 Ill. Reg, effective)						
2056	`							
2057	Section 302.5	507 Thermal Standards for Existing Sources on January 1, 1971						
2058								
2059	All sources of	f heated effluents in existence as of January 1, 1971, must meet the following						
2060	restrictions of	utside of a mixing zone which must be no greater than a circle with a radius of 305						
2061	m (1000 feet)) or an equal fixed area of simple form.						
2062	. ,							
2063	a)	There must be no abnormal temperature changes that may affect aquatic life.						
2064								

2065 2066 2067	b)		The normal daily and seasonal temperature fluctuations that existed before the addition of heat must be maintained.						
2068 2069 2070 2071	c)	exceed 1.7	The maximum temperature rise at any time above natural temperatures must not exceed 1.7 $^{\circ}$ C (3 $^{\circ}$ F). In addition, the water temperature must not exceed the maximum limits indicated in the following table:						
2071			° C	° F		°C	° F		
		JAN.	7	45	JUL.	27	80		
		FEB.	7	45	AUG.	27	80		
		MAR.	7	45	SEPT.	27	80		
		APR.	13	55	OCT.	18	65		
		MAY	16	60	NOV.	16	60		
		JUN.	21	70	DEC.	10	50		
2072				, 0	220	10	•••		
2073	(Sout	rce: Amende	d at 46 Ill. F	Reg.	, effective)			
2074	(200				,	/			
2075	Section 302	508 Therma	al Standard	s for Sourc	es Under Constructi	on But Not	In Operation		
2076	on January						- operation		
2077	on oundur j	-, -, -, -							
2078	Any effluent	source under	. constructio	n hut not in	operation on January	1 1971 mu	st meet all the		
2079	•				n addition must meet t				
2080	requirement	, or <i>55</i> m. <i>r</i> ta		2.507 und n	n adamon mast moot t				
2000	a)	The botton	n the shore	the hypolin	nnion and the thermo	cline must n	ot be affected		
2081	u)		The bottom, the shore, the hypolimnion, and the thermocline must not be affected by any heated effluent.						
2082		by any nea		•					
2083	b)	Hantad aff	Heated effluent must not affect spawning grounds or fish migration routes.						
2084	0)		lucint must n	iot affect spa	awning grounds of fish	ii iiigiatioii	ioutes.		
2085	c)	Discharge	structures m	ust be desid	gned to maximize sho	t_term mivi	ng and thus to		
2080	0)	0		•	l in temperature.		ing and thus to		
2087		reduce the	area signin		i în temperature.				
	d)	Discharge	must not av	and ambin	nt temperatures by mo	ra than 11 %	へ (2 0 %E)		
2089 2090	u)	Discharge	must not ex		in temperatures by mo		2 (20 T).		
	2)	Heated off	lucenta from	man than a	no course must not in	tomost			
2091	e)	neated eff	idents from	more than c	ne source must not in	ieraci.			
2092	Δ	A 11	-1-1		4	f :			
2093	f)		1	ust be taker	to reduce the number	of organish	ns drawn into		
2094		or against t	the intakes.						
2095									

2096(Source: Amended at 46 Ill. Reg. ____, effective ____)2097

2098Section 302.509Other Sources2099

2100 a) A source of heated effluent which was not in operation or under construction as of

2101 2102		•	971, must not discharge more than a daily average of 29 megawatts British thermal units per hour).
2102			sintish thermal times per hour).
2103	b)	Sources of h	eated effluents which discharge less than a daily average of 29
2104	0)		0.1 billion British thermal units per hour) not in operation or under
2105		•	as of January 1, 1971, must meet all requirements of 35 Ill. Adm.
2100			7 and 302.508.
2107		Code 302.30	7 and 502.508.
	(Sour	Amondad	at 46 III Dag officience)
2109	(Sourc	ce: Amended	at 46 Ill. Reg, effective)
2110	G (* 202 5	10 T	
2111	Section 302.5	10 Incorpora	ations by Reference (Repealed)
2112	(0	D 11	
2113	(Sourc	ce: Repealed a	at 46 Ill. Reg, effective)
2114	~		~
2115	Section 302.5	515 Offensive	Conditions
2116			
2117		U	an Basin must be free from sludge or bottom deposits, floating debris,
2118			gal growth, color or turbidity of other than natural origin. The
2119	allowed mixin	ng provisions o	of 35 Ill. Adm. Code 302.102 must not be used to comply with the
2120	provisions of	this Section.	
2121			
2122	(Sourc	ee: Amended	at 46 Ill. Reg, effective)
2123			
2124	Section 302.5	520 Regulatio	on and Designation of Bioaccumulative Chemicals of Concern
2125	(BCCs)		
2126			
2127	a)	For regulatin	g BCCs in compliance with 35 Ill. Adm. Code 302.521 and 302.530,
2128	,	the following	g chemicals must be considered as BCCs:
2129			
2130		1) any c	hemical or class of chemicals listed as a BCC in 35 Ill. Adm. Code
2131			501; and
2132			
2133		2) any c	hemical or class of chemicals that the Agency has determined meets
2134			haracteristics of a BCC as defined in 35 Ill. Adm. Code 302.501 as
2135			ated by:
2135		mare	uidu oy.
2130		A)	publication in the Illinois Register; or
2137		11)	publication in the minors register, or
2138		B)	notification to a permittee or applicant; or
		D)	nouncation to a permittee of applicant, of
2140		\sim	filing a notition with the Doord to work that the share is 1 work to
2141		C)	filing a petition with the Board to verify that the chemical must be
2142			designated a BCC.
2143	1 \	NI-6 11 1	1 = -1 = -1 = -1
2144	b)	notwithstand	ding subsections $(a)(2)(A)$ and (B) , a chemical must not be regulated

2145 2146 2147 2148		publica	ation or	e Agency has not filed a petition, within 60 days after such notification, with the Board in compliance with Section 28.2 of the hat the chemical must be designated a BCC.					
2148 2149 2150 2151 2152 2153	c)	chemic consist must de	al has a ent with esignate	ion (b) and 35 Ill. Adm. Code 302.570, if the Board verifies that a a human health bioaccumulation factor greater than 1,000 and is in the definition of a BCC in 35 Ill. Adm. Code 302.501, the Board e the chemical as a BCC and list the chemical in 35 Ill. Adm. Code e Board fails to verify the chemical as a BCC in its final action on					
2154 2155 2156		the ver	ification	n petition, the chemical must not be listed as a BCC and must not be BCC in compliance with 35 Ill. Adm. Code 302.521 and 302.530.					
2157	(Sourc	e: Ame	nded at	46 Ill. Reg, effective)					
2158 2159	Section 302.5	21 Sup	plemen	Ital Antidegradation Provisions for BCCs					
2160	,								
2161	a)			ng the provisions of 35 Ill. Adm. Code 302.105, waters within the					
2162			-	n Basin must not be lowered in quality due to new or increased					
2163		-	-	stances defined as BCCs in 35 Ill. Adm. Code 302.501 from any					
2164				vity subject to the NPDES permitting, Section 401 water quality					
2165			-	rovisions of the Clean Water Act (P.L. 92-100, as amended), or					
2166		joint permits from the Agency and the Illinois Department of Natural Resources							
2167		under Section 39(n) of the Act [415 ILCS 5/39(n)] until and unless it can be							
2168		affirma	affirmatively demonstrated that such change is necessary to accommodate						
2169		importa	important economic or social development.						
2170									
2171		1)	Where	ambient concentrations of a BCC are equal to or exceed an					
2172			applica	ble water quality criterion, no increase in loading of that BCC is					
2173			allowe						
2174									
2175		2)	Where	ambient concentrations of a BCC are below the applicable water					
2176		_,		criterion, a demonstration to justify increased loading of that BCC					
2177			1 1	include the following:					
2178									
2179			A)	Pollution Prevention Alternatives Analysis. Identify any cost-					
2180			11)	effective reasonably available pollution prevention alternatives and					
2181				techniques that would eliminate or significantly reduce the extent					
2182				of increased loading of the BCC.					
2182				or mereased roughly of the Deer.					
2183			B)	Alternative or Enhanced Treatment Analysis. Identify alternative					
2185			J)	or enhanced treatment techniques that are cost effective and					
2185				reasonably available to the entity that would eliminate or					
2180				significantly reduce the extent of increased loading of the BCC.					
2187				significantly reduce the extent of increased loading of the BCC.					
2100									

	<u>1st Notic</u>	<u>e</u>		JCAR350302-2207052r01
2189 2190 2191 2192			C)	Important Social or Economic Development Analysis. Identify the social or economic development and the benefits that would be forgone if the increased loading of the BCC is not allowed.
2192 2193 2194 2195 2196		3)	water	case will increased loading of BCCs result in exceeding applicable quality criteria or concentrations exceeding the level of water y necessary to protect existing uses.
2197 2198 2199 2200 2201 2202		4)	proces under Agene 39(n)	ges in loadings of any BCC within the existing capacity and sses of an existing NPDES authorized discharge, certified activity Section 401 of the Clean Water Act, or joint permits from the cy and the Illinois Department of Natural Resources under Section of the Act are not subject to the antidegradation review of subsection hese changes include:
2203 2204 2205 2206			A)	normal operational variability, including intermittent increased discharges due to wet weather conditions;
2200 2207 2208			B)	changes in intake water pollutants;
2209 2210			C)	increasing the production hours of the facility; or
2211			D)	increasing the rate of production.
2212 2213 2214 2215 2216 2217 2218 2219		5)	demon satisfy issuar joint p	letermination to allow increased loading of a BCC based on a instration of important economic or social development need must by the public participation requirements of 40 CFR 25 prior to final ince of the NPDES permit, Section 401 water quality certification, or permits from the Agency and the Illinois Department of Natural inces under Section 39(n) of the Act.
2220 2221 2222 2223	b)	the Ag	gency d	g actions are not subject to the provisions of subsection (a), unless etermines the circumstances of an individual situation warrant f those provisions to adequately protect water quality:
2223 2224 2225		1)	Short	-term, temporary (i.e., weeks or months) lowering of water quality;
2223 2226 2227 2228		2)	• •	sses that are not prohibited at 40 CFR 122.41(m), incorporated by nce in 35 Ill. Adm. Code 301.106; or
2228 2229 2230 2231 2232		3)	Comp federa	onse actions under the Comprehensive Environmental Response, bensation and Liability Act (CERCLA), as amended, or similar al or State authority, undertaken to alleviate a release into the comment of hazardous substances, pollutants or contaminants that pose

2233	danger to public health or welfare.			
2234 2235	(Source: Amended at 46 Ill. Reg, effective)			
2236				
2237	Section 302.5	525 Radioactivity		
2238				
2239	Except as pro	vided in 35 Ill. Adm. Code 302.102, all waters of the Lake Michigan Basin must		
2240	meet the following concentrations:			
2241				
2242	a)	Gross beta concentrations must not exceed 100 picocuries per liter (pCi/L).		
2243				
2244	b)	Strontium 90 concentration must not exceed 2 picocuries per liter (pCi/L).		
2245				
2246	c)	The annual average radium 226 and 228 combined concentration must not exceed		
2247		3.75 picocuries per liter (pCi/L).		
2248				
2249	(Sour	ce: Amended at 46 Ill. Reg, effective)		
2250	× ×			
2251	Section 302.5	530 Supplemental Mixing Provisions for Bioaccumulative Chemicals of		
2252	Concern (BC	CCs)		
2253	× ×	, ,		
2254	The Allowed	Mixing, Mixing Zones, and ZIDs provisions of 35 Ill. Adm. Code 302.102 apply		
2255	within the Lake Michigan Basin except as otherwise provided for substances defined as BCCs in			
2256		Code 302.501:		
2257				
2258	a)	Mixing is not allowed for BCCs for new discharges commencing on or after		
2259	,	December 24, 1997.		
2260				
2261	b)	Discharges of BCCs existing as of December 24, 1997 are eligible for mixing		
2262	,	allowance consistent with 35 Ill. Adm. Code 302.102 until March 23, 2007. After		
2263		March 23, 2007 mixing for BCCs will not be allowed except as provided in		
2264		subsections (c) and (d).		
2265				
2266	c)	Mixing allowance for a source in existence on December 24, 1997 may continue		
2267	,	beyond March 23, 2007 where it can be demonstrated on a case by case basis that		
2268		continuation of mixing allowance is necessary to achieve water conservation		
2269		measures that result in overall reduction of BCC mass loading to the Lake		
2270		Michigan Basin.		
2271		e e e e e e e e e e e e e e e e e e e		
2272	d)	Mixing allowance for a source in existence on December 24, 1997 will only		
2273	,	continue if necessitated by technical and economic factors. Any mixing allowance		
2274		continued beyond March 23, 2007 based on technical and economic factors must		
2275		be limited to not more than one NPDES permit term, and must reflect the		
2276		maximum achievable BCC loading reduction within the identified technical and		

2277		economic considerations necessitating the exception. The continued mixing			
2278	allowance must not be renewed beyond that permit term unless a new				
2279	determination of technical and economic necessity is made.				
2280					
2281	(Sour	ce: Amended at 46 Ill. Reg, effective)			
2282					
2283	Section 302.	535 Ammonia Nitrogen			
2284					
2285	The Open Waters of Lake Michigan as defined in 35 Ill. Adm. Code 302.501 must not exceed				
2286	-	tal ammonia. The remaining waters of the Lake Michigan Basin are subject to the			
2287	following:				
2288	,				
2289	a)	Total ammonia nitrogen must in no case exceed 15 mg/L.			
2290					
2291	b)	Un-ionized ammonia nitrogen must not exceed the acute and chronic standards			
2292		given below subject to the provisions of 35 Ill. Adm. Code 302.208(a) and (b):			
2293					
2294		1) From April through October, the Acute Standard (AS) must be 0.33 mg/L			
2295		and the chronic standard (CS) must be 0.057 mg/L .			
2296					
2297		2) From November through March, the AS must be 0.14 mg/L and the CS			
2298		must be 0.025 mg/L .			
2299					
2300	c)	For this Section, the concentration of un-ionized ammonia nitrogen as N and total			
2301		ammonia as N must be computed according to the following equations:			
2302					
		$U = \frac{N}{[0.94412(1+10^{x})+0.0559]}$			
		$[0.94412(1+10^{x}) + 0.0559]$			
2303					
2304		and N = U[$0.94412(1 + 10^{x}) + 0.0559$]			
2305					
2306		Where:			
2307					
		$X = 0.09018 + \frac{2729.92}{(T+273.16)} - pH$			
		U = Concentration of un-ionized ammonia as N in mg/L			
		N = Concentration of ammonia nitrogen as N in mg/L			
		T = Temperature in degrees Celsius.			
2308					
2309	(Sour	ce: Amended at 46 Ill. Reg, effective)			
2310	(550	,			
2311	Section 302.4	540 Other Toxic Substances			
2312					

2313 Waters of the Lake Michigan Basin must be free from any substance or any combination of 2314 substances in concentrations toxic or harmful to human health, or to animal, plant or aquatic life. The numeric standards protective of particular uses specified for individual chemical substances 2315 2316 in 35 Ill. Adm. Code 302.504 are not subject to recalculation by this Section, however, where no 2317 standard applies to a category, a numeric value may be calculated. 2318 2319 a) Any substance will be deemed toxic or harmful to aquatic life if present in 2320 concentrations that exceed the following: 2321 2322 1) A Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion 2323 (LMAATC) or Tier II Lake Michigan Basin Acute Aquatic Life Toxicity 2324 Value (LMAATV) derived under procedures in 35 Ill. Adm. Code 2325 302.555, 302.560 or 302.563 at any time; or 2326 2327 2) A Tier I Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion (LMCATC) or Tier II Lake Michigan Basin Chronic Aquatic Life 2328 Toxicity Value (LMCATV) derived under procedures in 35 Ill. Adm. 2329 2330 Code 302.565 as an average of four samples collected on four different 2331 days. 2332 2333 b) Any combination of substances, including effluents, will be deemed toxic to 2334 aquatic life if present in concentrations that exceed either subsection (b)(1) or (2): 2335 2336 1) A sample of water from the Lake Michigan Basin collected outside of a 2337 designated zone of initial dilution must not exceed 0.3 TU_a as determined 2338 for the most sensitive species tested using acute toxicity testing methods. 2339 2340 2) A sample of water from the Lake Michigan Basin collected outside a 2341 designated mixing zone must not exceed 1.0 TU_c as determined for the 2342 most sensitive species tested using chronic toxicity testing methods. 2343 2344 3) To demonstrate compliance with subsections (1) and (2), at least two 2345 resident or indigenous species must be tested. The rainbow trout must be 2346 used to represent fishes for the Open Waters of Lake Michigan and the 2347 fathead minnow must represent fishes for the other waters of the Lake 2348 Michigan Basin. Ceriodaphnia must represent invertebrates for all waters 2349 of the Lake Michigan Basin. Other common species may be used if listed in Table I (a) of 40 CFR 136, incorporated by reference at 35 Ill. Adm. 2350 2351 Code 301.106, and approved by the Agency. 2352 2353 Any substance must be deemed toxic or harmful to wildlife if present in c) 2354 concentrations that exceed a Tier I Lake Michigan Basin Wildlife Criterion 2355 (LMWLC) derived under procedures in 35 Ill. Adm. Code 302.575 as an 2356 arithmetic average of four samples collected over four different days.

2357		
2358	d)	For any substance that is a threat to human health through drinking water
2359	<i>,</i>	exposure only, the resulting criterion or value must apply to only the Open Waters
2360		of Lake Michigan. For any substance that is determined to be a BCC, the
2361		resulting criterion must apply in the entire Lake Michigan Basin. These
2362		substances must be deemed toxic or harmful to human health if present in
2363		concentrations that exceed either of the following:
2364		5
2365		1) A Tier I Lake Michigan Basin Human Health Threshold Criterion
2366		(LMHHTC) or Tier II Lake Michigan Basin Human Health Threshold
2367		Value (LMHHTV) based on disease or functional impairment due to a
2368		physiological mechanism for which there is a threshold dose below which
2369		no damage occurs as derived under procedures in 35 Ill. Adm. Code
2370		302.585 as an arithmetic average of four samples collected over four
2371		different days; or
2372		
2373		2) A Tier I Lake Michigan Basin Human Health Nonthreshold Criterion
2374		(LMHHNC) or Tier II Lake Michigan Basin Human Health Nonthreshold
2375		Value (LMHHNV) based on disease or functional impairment due to a
2376		physiological mechanism for which any dose may cause some risk of
2377		damage as derived under procedures in 35 Ill. Adm. Code 302.590 as an
2378		arithmetic average of four samples collected over four different days.
2378		and inche average of four samples concered over four unterent days.
2380	e)	The derived criteria and values apply at all points outside of any waters in which
2380	0)	mixing is allowed under 35 Ill. Adm. Code 302.102 or 302.530.
2382		mixing is anowed under 55 m. Adm. Code 502.102 of 502.550.
2382	f)	The procedures of this Subpart E set forth minimum data requirements,
2383	1)	appropriate test protocols and data assessment methods for establishing criteria or
2384		values under subsections (b), (c), and (d). No other procedures may be used to
2385		
2380		establish such criteria or values unless approved by the Board in a rulemaking or
2388		adjusted standards proceeding under Title VII of the Act. The validity and
		applicability of these procedures may not be challenged in any proceeding
2389		brought under Title VIII or X of the Act, although the validity and correctness of
2390		application of the numeric criteria or values derived under this Subpart may be
2391		challenged in such proceedings under subsection (g).
2392	-)	Challen and the second is a family of a site o
2393	g)	Challenges to application of criteria and values.
2394		
2395		1) A permittee may challenge the validity and correctness of application of a
2396		criterion or value derived by the Agency under this Section only at the
2397		time such criterion or value is first applied in its NPDES permit under 35
2398		Ill. Adm. Code 309.152 or in an action under Title VIII of the Act for
2399		violation of the toxicity water quality standard. Failure of a person to
2400		challenge the validity of a criterion or value at the time of its first

	<u>1st Notice</u>	JCAR350302-2207052r01			
2401 2402 2403 2404		application to that person's facility constitutes a waiver of a challenge in any subsequent proceeding involving application of the criterion or value to that person.			
2405 2406 2407 2408	2)	Consistent with subsection $(g)(1)$, if a criterion or value is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion or value in a permit appeal under 35 Ill. Adm. Code 309.181.			
2409 2410 2411 2412 2413 2414	3)	Consistent with subsection $(g)(1)$, in an action where alleged violation of the toxicity water quality standard is based on alleged excursion of a criterion or value, the person bringing the action has the burdens of going forward with proof and persuasion regarding the general validity and correctness of application of the criterion or value.			
2415 2416 2417 2418	,	ections (a) through (e) do not apply to USEPA registered pesticides approved juatic application and applied under the following conditions:			
2419 2420	1)	Application must be made in strict compliance with label directions;			
2420 2421 2422 2423	2)	Applicator must be properly certified under the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972));			
2423 2424 2425 2426 2427	3)	Applications of aquatic pesticides must comply with the laws, regulations and guidelines of all State and federal agencies authorized by law to regulate, use or supervise pesticide applications;			
2427 2428 2429 2430 2431 2432 2433 2433 2434 2435	4)	Aquatic pesticide must not be applied to waters affecting public or food processing water supplies unless a permit to apply the pesticide has been obtained from the Agency. All permits must be issued so as not to cause a violation of the Act or of any of the Board's rules. To aid applicators in determining their responsibilities under this subsection (h), a list of waters affecting public water supplies will be published and maintained by the Agency's Division of Public Water Supplies.			
2435 2436 2437	(Source: Am	nended at 46 Ill. Reg, effective)			
2437 2438 2439	Section 302.545 Data Requirements				
2440 2441 2442 2443 2444	calculating criteria o testing procedures, s according to method	view, for validity, applicability and completeness the data used in r values. To the extent available, and to the extent not otherwise specified, election of test species and other aspects of data acquisition must be s published by USEPA or nationally recognized standards of organizations, nods found in Standard Methods, incorporated by reference in 35 Ill. Adm.			

2445 2446 2447	Code 301.100 301.106.	6, or recommended in 40 CFR 132, incorporated by reference in 35 Ill. Adm. Code						
2447 2448 2449	(Source: Amended at 46 Ill. Reg, effective)							
2450	Section 302.	550 Analytical Testing						
2451								
2452	All methods	of sample collection, preservation, and analysis used in applying any of the						
2453	requirements	of this Subpart must be consistent with the methods published by USEPA or						
2454	nationally rec	ognized standards of organizations, including those methods found in Standard						
2455	Methods, inc	orporated by reference in 35 Ill. Adm. Code 301.106, or recommended in 40 CFR						
2456 2457	132 and incom	porated by reference in 35 Ill. Adm. Code 301.106.						
2457	(Sour	ce: Amended at 46 Ill. Reg, effective)						
2459								
2460	Section 302.	553 Determining the Lake Michigan Aquatic Toxicity Criteria or Values –						
2461	General Pro	cedures						
2462								
2463	The Lake Mi	chigan Aquatic Life Criteria and Values are those concentrations or levels of a						
2464	substance at v	which aquatic life is protected from adverse effects resulting from short or long term						
2465	exposure in v	vater.						
2466								
2467	a)	Tier I criteria and Tier II values to protect against acute effects in aquatic						
2468		organisms will be calculated according to procedures listed at 35 Ill. Adm. Code						
2469		302.555, 302.560 and 302.563. The procedures of 35 Ill. Adm. Code 302.560						
2470		must be used as necessary to allow for interactions with other water quality						
2471		characteristics such as hardness, pH, temperature, etc. Tier I criteria and Tier II						
2472		values to protect against chronic effects in aquatic organisms must be calculated						
2473		according to the procedures listed at 35 Ill. Adm. Code 302.565.						
2474								
2475	b)	Minimum data requirements. In order to derive a Tier I acute or chronic criterion,						
2476		data must be available for at least one species of freshwater animal in at least						
2477		eight different families such that the following taxa are included:						
2478								
2479		1) The family Salmonidae in the class Osteichthyes;						
2480		2) Our other for its in the store Out is the						
2481		2) One other family in the class Osteichthyes;						
2482		2) A third family in the above Chandeter						
2483		3) A third family in the phylum Chordata;						
2484		1) A silvelatoria constances						
2485		4) A planktonic crustacean;						
2486 2487		5) A benthic crustacean;						
2487		5) A benthic crustacean;						
∠ 1 00								

1st Notice

2489		6)	An insect;
2490		,	
2491		7)	A family in a phylum other than Arthropoda or Chordata; and
2492		,	
2493		8)	A family from any order of insect or any phylum not already represented.
2494		-)	
2495	c)	Data f	for tests with plants, if available, must be included in the data set.
2496	-)		······································
2497	d)	If data	a for acute effects are not available for all the eight families listed above, but
2498			ailable for the family Daphnidae, a Tier II value must be derived according
2499			cedures in 35 Ill. Adm. Code 302.563. If data for chronic effects are not
2500		-	ble for all the eight families, but there are acute and chronic data available
2500			ling to 35 Ill. Adm. Code 302.565(b) so that three acute to chronic ratios
2502			s) can be calculated, then a Tier I chronic criterion can be derived according
2503			cedures in 35 Ill. Adm. Code 302.565. If three ACRs are not available, then
2503		-	II chronic value can be derived according to procedures in 35 Ill. Adm.
2505			302.565(b).
2505		coue	502.505(0).
2500	e)	Data 1	nust be obtained from species that have reproducing wild populations in
2508	0)		America except that data from salt water species can be used in the
2500			tion of an ACR.
2510		uenva	
	(Carry		ended at 46 Ill. Reg, effective)
2311	LNOUT		
2511 2512	(Sour	ce. Am	
2512			
2512 2513	Section 302.	555 De	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion
2512 2513 2514	Section 302.	555 De	
2512 2513 2514 2515	Section 302. (LMAATC)	555 De : Indep	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry
2512 2513 2514 2515 2516	Section 302. (LMAATC): If the acute to	555 De Indep	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality
2512 2513 2514 2515 2516 2517	Section 302. (LMAATC): If the acute to characteristic	555 De Indep	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using
2512 2513 2514 2515 2516 2517 2518	Section 302. (LMAATC): If the acute to	555 De Indep	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using
2512 2513 2514 2515 2516 2517 2518 2519	Section 302. (LMAATC): If the acute to characteristic the procedure	555 De Indep oxicity c , includ es below	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using 7.
2512 2513 2514 2515 2516 2517 2518 2519 2520	Section 302. (LMAATC): If the acute to characteristic	555 De Indep oxicity c , includ es below For ea	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521	Section 302. (LMAATC): If the acute to characteristic the procedure	555 De Indep oxicity c , includ es below For ea Mean	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. uch species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522	Section 302. (LMAATC): If the acute to characteristic the procedure	555 De Indep oxicity c , includ es below For ea Mean	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523	Section 302. (LMAATC): If the acute to characteristic the procedure a)	555 De Indep oxicity of includ es below For ea Mean values	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. ach species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524	Section 302. (LMAATC): If the acute to characteristic the procedure	555 De Indep oxicity of includ es below For ea Mean values For ea	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using the species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute a from all tests.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525	Section 302. (LMAATC): If the acute to characteristic the procedure a)	555 De Indep oxicity c , includ es below For ea Mean values For ea Acute	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. uch species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. uch genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526	Section 302. (LMAATC): If the acute to characteristic the procedure a)	555 De Indep oxicity c , includ es below For ea Mean values For ea Acute	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using the species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute a from all tests.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527	Section 302.: (LMAATC): If the acute to characteristic the procedure a) b)	555 De Indep oxicity of includ es below For ea Mean values For ea Acute availa	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. ech species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. ech genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs ble for the genus.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528	Section 302. (LMAATC): If the acute to characteristic the procedure a)	555 De Indep oxicity of includ es below For ea Mean values For ea Acute availa	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. uch species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. uch genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529	Section 302.: (LMAATC): If the acute to characteristic the procedure a) b) c)	555 De Indep oxicity of includ es below For ea Mean values For ea Acute availa The G	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. uch species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. uch genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs ble for the genus.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530	Section 302.: (LMAATC): If the acute to characteristic the procedure a) b)	555 De Indep oxicity of includ es below For ea Mean values For ea Acute availa The G Ranks	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. the species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. The genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs ble for the genus. SMAVs are ordered from high to low in numerical order.
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529	Section 302.: (LMAATC): If the acute to characteristic the procedure a) b) c)	555 De Indep oxicity of includ es below For ea Mean values For ea Acute availa The G Ranks	termining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion endent of Water Chemistry of the chemical has not been shown to be related to a water quality ing hardness, pH, or temperature, the Tier I LMAATC is calculated using v. the species for which more than one acute value is available, the Species Acute Value (SMAV) is calculated as the geometric mean of the acute is from all tests. The genus for which one or more SMAVs are available, the Genus Mean Value (GMAV) is calculated as the geometric mean of the SMAVs ble for the genus. WAAVs are ordered from high to low in numerical order.

2522		
2533		The sumulative metability \mathbf{D} is calculated for each $\mathbf{CMAW} \approx \mathbf{D}/(\mathbf{N}+1)$
2534	e)	The cumulative probability, P, is calculated for each GMAV as $R/(N+1)$.
2535	6	The CMAN to be seen that the estimation of set estimation (a) must be the second
2536	f)	The GMAVs to be used in the calculations of subsection (g) must be those with
2537		cumulative probabilities closest to 0.05. If there are fewer than 59 GMAVs in the
2538		total data set, the values utilized must be the lowest four obtained through the
2539		ranking procedures of subsections (c) and (d).
2540		
2541	g)	Using the GMAVs identified under subsection (f) and the Ps calculated under
2542		subsection (e), the Final Acute Value (FAV) and the LMAATC are calculated as:
2543		
2544		FAV = exp(A) and
2545		LMAATC = FAV/2
2546		
2547		Where:
2548		
		A = L + 0.2236 S
		$L = [\Sigma(\ln GMAV) - S(\Sigma(P(0.5)))]/4$
		$S = [[\Sigma((\ln GMAV)^2) - ((\Sigma(\ln GMAV))^2)/4] / [\Sigma(P) - ((\Sigma(P^{0.5}))^2)/4]]^{0.5}$
2549		5 [[2((IIO)(14))] - ((2(IIO)(14)))] +] + [2(1) - ((2(1)))] +]]
2550	h)	If a resident or indigenous species, whose presence is necessary to sustain
2551	,	commercial or recreational activities, will not be protected by the calculated
2552		FAV, then the SMAV for that species is used as the FAV.
2553		
2554	(Sou	rce: Amended at 46 Ill. Reg, effective)
2555	(2004)	
2556	Section 302	560 Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity
2550		MAATC): Dependent on Water Chemistry
2558		with the of the
2559	If data are as	vailable to show that a relationship exists between a water quality characteristic
2560		acute toxicity to two or more species, a Tier I LMAATC must be calculated using
2561	· · · ·	n this Section. Although the relationship between hardness and acute toxicity is
2562	1	
2362 2563	• • •	n-linear, it can be linearized by a logarithmic transformation (i.e., for any variable, K, thm of K) of the variables and plotting the logarithm of hardness against the
	() U	
2564	e	acute toxicity. Similarly, relationships between acute toxicity and other water
2565	1 .	icteristics, such as pH or temperature, may require a transformation, including no
2566		on (i.e., for any variable, K, $f(K) = K$) for one or both variables to obtain least
2567	1	r regression of the transformed acute toxicity values on the transformed values of
2568	the water qua	ality characteristic. An LMAATC is calculated using the following procedures.
2569		
2570	a)	For each species for which acute toxicity values are available at two or more
2571		different values of the water quality characteristic, a linear least squares
2572		regression of the transformed acute toxicity (TAT) values on the transformed

1st Notice

2573		water quality characteristic (TWQC) values is performed to obtain the slope of the					
2574		line describing the relationship.					
2575							
2576	b)	Each of the slopes determined under subsection (a) is evaluated as to whether it is					
2577		statistically valid, considering the range and number of tested values of the water					
2578		quality characteristic and the degree of agreement within and between species. If					
2579		slopes are not available for at least one fish and one invertebrate species, or if the					
2580		available slopes are too dissimilar or if too few data are available to define the					
2581		relationship between acute toxicity and the water quality characteristic, then the					
2582		LMAATC must be calculated using the procedures in 35 Ill. Adm. Code 302.555.					
2583							
2584	c)	Normalize the TAT values for each species by subtracting W, the arithmetic mean					
2585		of the TAT values of a species, from each of the TAT values used in the					
2586		determination of the mean, such that the arithmetic mean of the normalized TAT					
2587		values for each species individually or for any combination of species is zero					
2588		(0.0).					
2589							
2590	d)	Normalize the TWQC values for each species using X, the arithmetic mean of the					
2591		TWQC values of a species, in the same manner as in subsection (c).					
2592							
2593	e)	Group all the normalized data by treating them as if they were from a single					
2594		species and perform a least squares linear regression of all the normalized TAT					
2595		values on the corresponding normalized TWQC values to obtain the pooled acute					
2596		slope, V.					
2597							
2598	f)	For each species, the graphical intercept representing the species TAT intercept,					
2599		f(Y), at a specific selected value, Z, of the WQC is calculated using the equation:					
2600							
2601		f(Y) = W - V(X - g(Z))					
2602							
2603		Where:					
2604							
		f() is the transformation used to convert acute toxicity values to TAT					
		values					
		Y is the species acute toxicity intercept or species acute intercept					
		W is the arithmetic mean of the TAT values as specified in subsection (c)					
		V is the pooled acute slope as specified in subsection (e)					
		X is the arithmetic mean of the TWQC values as specified in					
		subsection (c)					

- subsection (c) g() is the transformation used to convert the WQC values to TWQC values
- $Z \quad \text{is a selected value of the WQC} \quad$

2605		
2605	ς.	
2606	g)	For each species, determine the species acute intercept, Y, by carrying out an
2607		inverse transformation of the species TAT value, $f(Y)$. For example, in the case
2608		of a logarithmic transformation, $Y = antilogarithm of (f(Y))$; or in the case where
2609		no transformation is used, $Y = f(Y)$.
2610		
2611	h)	The Final Acute Intercept (FAI) is derived by using the species acute intercepts,
2612		obtained from subsection (f), in compliance with the procedures described in 35
2613		Ill. Adm. Code 302.555(b) through (g), with the word "value" replaced by the
2614		word "intercept". Note that in this procedure geometric means and natural
2615		logarithms are always used.
2616		5
2617	i)	The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two. If, for
2618	-)	a commercially or recreationally important species, the geometric mean of the
2619		acute values at Z is lower than the FAV at Z, then the geometric mean of that
2620		species must be used as the FAV.
2620		
2622	j)	The LMAATC at any value of the WQC, denoted by WQCx, is calculated using
2622	J <i>)</i>	the terms defined in subsection (f) and the equation:
2623		the terms defined in subsection (1) and the equation.
2625		LMAATC = exp[V(g(WQCx) - g(Z)) + f(AAI)]
2625		$E_{\text{MAATC}} = \exp[\sqrt{(g(w_{\text{QCX}}) - g(Z))} + n(AAT)]$
2627	(Sour	rce: Amended at 46 Ill. Reg, effective)
2627	(Sour	(ce. Amended at 40 m. Keg, enecuve)
2628	Section 302	563 Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity
2629	Value (LMA	
2630 2631	value (LIVIA	AIV)
2631	If all aight m	inimum data requirements for colculating a FAV using Tior I presedures are not
2632	-	inimum data requirements for calculating a FAV using Tier I procedures are not I LMAATV must be calculated for a substance as follows:
	met, a met m	I LWIAAT V must be calculated for a substance as follows.
2634		The lowest CMAV in the detabase is divided by the Secondary Acute Fester
2635	a)	The lowest GMAV in the database is divided by the Secondary Acute Factor
2636		(SAF) corresponding to the number of satisfied minimum data requirements listed
2637		in the Tier I methodology (35 Ill. Adm. Code 302.553). In order to calculate a
2638		Tier II LMAATV, the data base must contain, at a minimum, a GMAV for one of
2639		the following three genera in the family Daphnidae – Ceriodaphnia sp., Daphnia
2640		sp., or Simocephalus sp. The Secondary Acute Factors are:
2641		
		Number of Minimum data requirements satisfied Secondary Acute Factor (required taxa)

1	43.8
2	26.0

			3		16.0
			4		14.0
			5		12.2
			6		10.4
			7		8.6
2642 2643 2644 2645	b)	-	-	ty characteristic, the Adm. Code 302.560	Fier II LMAATV must be
2646	(Sour	ce: Amended	l at 46 Ill. Reg	, effective)
2647 2648 2649 2650 2651					nic Aquatic Life Toxicity quatic Life Toxicity Value
2652	a)	Determinin	g Tier I LMCATC		
2653 2654 2655 2656 2657 2658 2659 2660 2661		indi fres LM 302 acut	genous species fro hwater organisms CATC is derived i 555 or 302.560 by e, SMCV (Specie	om eight different Not as specified in 35 Ill. n the same manner as y substituting LMCA	r at least eight resident or rth American genera of Adm. Code 302.553, a Tier I s the FAV in 35 Ill. Adm. Code TC for FAV or FAI, chronic for e) for SMAV, and GMCV
2662 2663 2664 2665 2666 2667		LM	CATC is calculate e-chronic ratios (A nal from at least th	d by dividing the FA ACRs) obtained from	ments of subsection (a), a Tier I V by the geometric mean of the at least one species of aquatic s provided that of the three
2668		A)	At least one is	a fish;	
2669 2670		B)	At least one is	an invertebrate; and	
2671 2672 2673 2674		C)	-	becies is an acutely se caltwater species.	nsitive freshwater species if the
2674 2675 2676					s equals the acute toxicity 35 Ill. Adm. Code 302.555 or

	1 st Notice	<u>9</u>			JCAR350302-2207052r01
2677 2678			302.56	0, divid	led by the chronic toxicity concentration.
2679 2680 2681 2682		4)	comme	ercial o ated LM	r indigenous species whose presence is necessary to sustain r recreational activities will not be protected by the ICATC, then the SMCV for that species is used as the
2683 2684 2685	b)	Detern	nining t	he Tier	II LMCATV
2685 2686 2687 2688 2689 2690		1)	proced a Tier	ures ar II Lake ated usi	nimum data requirements for calculating a FCV using Tier I e not met, or if there are not enough data for all three ACRs, Michigan Chronic Aquatic Life Toxicity Value must be ng a secondary acute chronic ratio (SACR) determined as
2691 2692 2693			A)	If few availa	er than three valid experimentally determined ACRs are ole:
2694 2695 2696				i)	Use sufficient ACRs of 18 so that the total number of ACRs equals three; and
2697 2698 2699 2700				ii)	Calculate the Secondary Acute-Chronic Ratio as the geometric mean of the three ACRs; or
2700 2701 2702 2703			B)	If no e 18.	xperimentally determined ACRs are available, the SACR is
2703 2704 2705		2)	Calcul	ate the	Tier II LMCATV using one of the following equations:
2705 2706 2707			A)	Tier II	LMCATV = FAV / SACR
2707 2708 2709			B)	Tier II	LMCATV = SAV / FACR
270) 2710 2711			C)	Tier II	LMCATV = SAV / SACR
2711 2712 2713				Where	:
2714 2715 2716					the SAV equals 2 times the value of the Tier II LMAATV calculated in 35 Ill. Adm. Code 302.563
2717 2717 2718 2719 2720		3)	lower	than the	nercially or recreationally important species, the SMCV is a calculated Tier II LMCATV, then the SMCV must be used LMCATV.

1st Notice

2721	(Sourc	e: Ar	nended at 46 Ill. Re	eg, effective)
2722	G (* 202 5	7 0 D	1 6 5 3	·	
2723		0/0 Pi	ocedures for Deri	ving Bioaccumulation	Factors for the Lake Michigan
2724	Basin				
2725	A 1.:	lation		d to voloto the concentur	tion of a substance in an associa
2726			· · · · · ·		ation of a substance in an aquatic
2727					which the organism resides when
2728 2729		-		,	A BAF is used in the derivation of
2729	water quality	criteri	a to protect whathe	e and criteria and values	to protect human health.
2730	2)	Salar	tion of data DAE	a can be obtained or day	alanad from one of the following
2731	a)				eloped from one of the following
2732		metn	ods, listed in order	of preference.	
2733		1)	Field-measured	BVE	
2734		1)	Ticiu-measureu	DAI'.	
2735		2)	Field measured	biota-sediment accumul	ation factor $(BSAF)$
2730		2)	Them-measured	olota-sculliont accullul	ation factor (BSAF).
2738		3)	Laboratory-mea	sured bioconcentration	factor (BCF)
2739		5)			carbon (POC) and dissolved
2740					on must be either measured or
2740			reliably estimate		in must be entiter medsured of
2742			Tendery estimate		
2743		4)	Predicted BCF.		
2744		•)			
2745			Predicted baselin	ne $BCF = Kow$.	
2746					
2747	b)	Calc	ulation of baseline	BAFs for organic chemi	icals.
2748	-)			-	used to calculate a baseline BAF
2749			-		th or wildlife specific BAF.
2750					1
2751		1)	Procedures for d	etermining the necessar	y elements of baseline calculation.
2752		,		0	
2753			A) Lipid not	rmalization. The lipid-n	ormalized concentration, C ₁ , of a
2754			· -	-	ng the following equation:
2755					
2756			C	$C_1 = C_b / f_1$	
2757					
2758			Where:		
2759					
			C		e organic chemical in the tissue of er whole organism or specified
			f	, . .	ue that is lipid
2760					

2761 2762 2763 2764 2765	B)	Bioavailability. The fraction of the total chemical in the ambient water that is freely dissolved, f_{fd} , must be calculated using the following equation:
2766 2767		$f_{fd} = 1 / \{1 + [(DOC)(Kow)/10] + [(POC)(Kow)]\}$
2768 2769		Where:
		 DOC = concentration of dissolved organic carbon, kg of dissolved organic carbon/L of water Kow = octanol-water partition coefficient of the chemical
		POC = concentration of particulate organic carbon, kg of particulate organic carbon/L of water
2770		
2771	C)	Food Chain Multiplier (FCM). For an organic chemical, the FCM
2772 2773		used must be taken from Table B-1 in Appendix B of 40 CFR 132
2774		incorporated by reference at 35 Ill. Adm. Code 301.106.
2775 2) Calcu	lation of baseline BAFs.
2776) Cure	
2777	A)	From field-measured BAFs:
2778)	
2779		Baseline BAF = { [measured BAF _{tT} / f_{fd}] - 1 } { 1 / f_1 }
2780		
2781		Where:
2782		
		$BAF_{tT} = BAF$ based on total concentration in tissue and water of study organism and site
		f ₁ = fraction of the tissue of study organism that is lipid
		f_{fd} = fraction of the total chemical that is freely dissolved in the ambient water
2783		
2784	B)	From a field measured biota-sediment accumulation factor
2785		(BSAF):
2786		
2787		(Baseline BAF) _i = (baseline BAF) _r (BSAF) _i (Kow) _i /
2788		(BSAF) _r (Kow) _r
2789 2790		Where:
2790		
2,71		$(BSAF)_i = BSAF$ for chemical "i"

JCAR350302-2207052r01

	$(BSAF)_r = BSAF$ for the reference chemical "r"
	$(KOW)_i$ = octanol-water partition coefficient for chemical " _i "
2702	(KOW)r = octanol-water partition coefficient for the reference chemical "r"
2792 2793 2794	i) A BSAF must be calculated using the following equation:
2795	$BSAF = C_1 / C_{soc}$
2796 2797 2798	Where:
	 C₁ = the lipid-normalized concentration of the chemical in tissue C_{soc} = the organic carbon-normalized concentration of the chemical in sediment
2799 2800 2801 2802	ii) The organic carbon-normalized concentration of a chemical in sediment, C _{soc} , must be calculated using the following equation:
2803 2804 2805	$C_{soc} = C_s / f_{oc}$
2806 2807	Where:
2807	C_s = concentration of chemical in sediment (µg/g sediment)
	f_{oc} = fraction of the sediment that is organic carbon
2808 2809 C) 2810	From a laboratory-measured BCF:
2810 2811 2812	baseline BAF = (FCM) { [measured BCF _{tT} / f_{fd}] - 1 } { 1 / f_1 }
2812 2813 2814	Where:
2014	$BCF_{tT} = BCF$ based on total concentration in tissue and water.
	f_1 = fraction of the tissue that is lipid
	f _{fd} = fraction of the total chemical in the test water that is freely dissolved
	FCM = the food-chain multiplier obtained from Table B-1 in Appendix B of 40 CFR 132, incorporated by reference at 35 Ill. Adm. Code 301.106, by linear

interpolation for trophic level 3 or 4, as necessary

				interpolation for dopine level 5 of 1, as necessary
2815				
2816			D)	From a predicted BCF:
2817				
2818				baseline $BAF = (FCM)$ (predicted baseline BCF) = (FCM)(Kow)
2819				
2820				Where:
2820				
2021				 FCM = the food-chain multiplier obtained from Table B-1 in Appendix B of 40 CFR 132, incorporated by reference at 35 Ill. Adm. Code 301.106 302.510, by linear interpolation for trophic level 3 or 4, as necessary Kow = octanol-water partition coefficient
2822				
2823	c)	Huma	an healtl	h and wildlife BAFs for organic chemicals:
2824				
2825		1)	Fracti	on freely dissolved (f_{fd}). By using the equation in subsection
2826		,		(B), the f _{fd} to be used to calculate human health and wildlife BAFs
2827				organic chemical must be calculated using a standard POC
2828				ntration of 0.00000004 kg/L and a standard DOC concentration of
2829				002 kg/L:
2830			0.000	
2830				$f_{fd} = 1 / [1 + (0.00000024 \text{ kg/L})(\text{Kow})]$
2832				$I_{Id} = I + [I + (0.000002 + Rg/L)(ROW)]$
2832		2)	Huma	in health BAF. The human health BAFs for an organic chemical
2833		2)		be calculated using the following equations:
2834			must	be calculated using the following equations.
			A)	East transfer layed 2.
2836			A)	For trophic level 3:
2837				$\mathbf{H} = \mathbf{H} + \mathbf{H} + \mathbf{D} + \mathbf{F} = \mathbf{F} + $
2838				Human Health $BAF_{HHTL3} = [(baseline BAF)(0.0182) + 1] (f_{fd})$
2839			D)	
2840			B)	For trophic level 4:
2841				
2842				Human Health $BAF_{HHTL4} = [(baseline BAF) (0.0310) + 1] (f_{fd})$
2843				
2844				Where:
2845				
2846				0.0182 and 0.0310 are the standardized fraction lipid values
2847				for trophic levels 3 and 4, respectively, that are used to
2848				derive human health criteria and values
2849				
2850		3)	Wildl	ife BAF. The wildlife BAFs for an organic chemical must be

0051				
2851			calcula	ated using the following equations:
2852			• >	
2853			A)	For trophic level 3:
2854				$W'_{11}'_{11}'_{11} D A D = [(1 1' D A D)(0 0 (A() + 1) (C))]$
2855				Wildlife $BAF_{WLTL3} = [(baseline BAF)(0.0646) + 1] (f_{fd})$
2856			D)	
2857			B)	For trophic level 4:
2858				$W'_{11}U_{12} = V_{12} = V_{$
2859				Wildlife BAF _{WLTL4} = [(baseline BAF)(0.1031) + 1] (f_{fd})
2860				XX 71
2861				Where:
2862				
2863				0.0646 and 0.1031 are the standardized fraction lipid values
2864				for trophic levels 3 and 4, respectively, that are used to
2865				derive wildlife criteria
2866	1\		1 1.1	
2867	d)			and wildlife BAFs for inorganic chemicals. For inorganic
2868				baseline BAFs for trophic levels 3 and 4 are both assumed to equal
2869		the BC	JF deter	mined for the chemical with fish.
2870		1)	TT	
2871		1)		n health. Measured BAFs and BCFs used to determine human
2872				BAFs for inorganic chemicals must be based on concentration in
2873			edible	tissue (e.g., muscle) of freshwater fish.
2874		•	*****	
2875		2)		fe. Measured BAFs and BCFs used to determine wildlife BAFs for
2876			-	nic chemicals must be based on concentration in the whole body of
2877			freshw	vater fish and invertebrates.
2878	(6		1 1	
2879	(Sour	ce: Ame	ended a	t 46 Ill. Reg, effective)
2880	G (* 202	575 D		
2881				s for Deriving Tier I Water Quality Criteria and Values in the
2882	Lake Michig	gan Basi	n to Pr	otect Wildlife
2883	The Lake M			(141:6- Criterion (L)(WC) is the concentration of a substance which
2884		-		(ildlife Criterion (LMWC) is the concentration of a substance which
2885				ois wild mammal and bird populations from adverse effects
2886				urface waters of the Lake Michigan Basin and from ingestion of
2887		-		n from surface waters of the Lake Michigan Basin. Wildlife criteria
2888				protect against long-term effects and are therefore considered
2889				lology involves utilization of data from test animals to derive criteria
2890				arget species: bald eagle, herring gull, belted kingfisher, mink and
2891 2892				geometric mean of species specific criteria for bird species or the LMWC to protect a broad range of species
2892	mammar spe	cies is cr	iosen as	s the LMWC to protect a broad range of species.
2893 2894		This ~	nothed .	must also be used for non-BCCs when appropriately modified to
20 74	a)	11115 11		must also be used for non-bees when appropriately mounted to

2895		consid	ler the f	following factors:				
2896 2897		1)	1) Selection of scientifically justified target species;					
2898		1)	,					
2899		2)	Relevant routes of chemical exposure;					
2900		_)	1 /					
2901		3)	Pertinent toxicity endpoints.					
2902		,						
2903	b)	Minin	num dat	ta requirements:				
2904								
2905		1)	Test d	lose (TD). In order to calculate a LMWC the following minimal data				
2906			base i	s required:				
2907								
2908			A)	There must be at least one data set showing dose-response for oral,				
2909				subchronic, or chronic exposure of 28 days for one bird species;				
2910				and				
2911								
2912			B)	There must be at least one data set showing dose-response for oral,				
2913				subchronic, or chronic exposure of 90 days for one mammal				
2914				species.				
2915								
2916		2)	Bioac	cumulation Factor (BAF) data requirements:				
2917								
2918			A)	For any chemical with a BAF of less than 125 the BAF may be				
2919				obtained by any method; and				
2920			D)					
2921			B)	For chemicals with a BAF of greater than 125 the BAF must come				
2922				from a field measured BAF or Biota-Sediment Accumulation				
2923				Factor (BSAF).				
2924	``	р	1 0					
2925	c)	Princi	ples for	development of criteria				
2926 2927		1)	Daga	standardization. The data for the test species must be expressed as,				
2927		1)						
2928				nverted to, the form mg/kg/d utilizing the guidelines for drinking and ng rates and other procedures in 40 CFR 132, incorporated by				
2929				nce in 35 Ill. Adm. Code 301.106.				
2930			Telefe	nce in 55 m. Adm. Code 501.100.				
2932		2)	Uncer	tainty factors (UF) for utilizing test dose data in the calculation of				
2932		<i>2</i>)		rget species value (TSV);				
2933			the tal	Set species value (15 v),				
2935			A)	Correction for intermittent exposure. If the animals used in a study				
2936			1 1)	were not exposed to the toxicant each day of the test period, the no				
2937				observed adverse effect level (NOAEL) must be multiplied by the				
2938				ratio of days of exposure to the total days in the test period.				
				tante et auje et enpoente te die tour auje in die test period.				

2939			
2940		B)	Correction from the lowest observed adverse effect level (LOAEL)
2941			to NOAEL (UF ₁). For those substances for which a LOAEL has
2942 2943			been derived, the UF ₁ must not be less than one and should not exceed 10.
2943			exceed 10.
2945		C)	Correction for subchronic to chronic extrapolation (UFs). In
2946		0)	instances where only subchronic data are available, the TD may be
2947			derived from subchronic data. The value of the UF _s must not be
2948			less than one and should not exceed 10.
2949			
2950		D)	Correction for interspecies extrapolations (UF _a). For the derivation
2951			of criteria, a UF_a must not be less than one and should not exceed
2952 2953			100. The UF _a must be used only for extrapolating toxicity data A appears specific UF
2955 2954			across species within a taxonomic class. A species specific UF_a must be selected and applied to each target species, consistent with
2955			the equation in subsection (d).
2956			
2957	d)	Calculation	of TSV. The TSV, measured in milligrams per liter (mg/L), is
2958		calculated a	ccording to the equation:
2959			
2960		$TSV = \{[T]$	$D \ge Wt] / [UF_a \ge UF_s \ge UF_1] \} / \{W + \Sigma [F_{TLi} \ge BAF_{WLTLi}] \}$
2961		Where:	
		WHELE.	
		TSV	= target species value in milligrams of substance per liter (mg/L).
		TD	= test dose that is toxic to the test species, either NOAEL or LOAEL.
		UFa	= the uncertainty factor for extrapolating toxicity data across
			species (unitless). A species-specific UF _a must be selected
			and applied to each target species, consistent with the
		TIC	equation.
		Uf_{s}	= the uncertainty factor for extrapolating from subchronic to
		$\mathbf{U}\mathbf{f}_1$	chronic exposures (unitless).= the uncertainty factor for extrapolation from LOAEL to
			NOAEL (unitless).
		Wt	= average weight in kilograms (kg) of the target species.
		W	= average daily volume of water in liters consumed per day
			(L/d) by the target species.
		Emr.	- average daily amount of food consumed by the target species

- F_{TLi} = average daily amount of food consumed by the target species in kilograms (kg/d) for trophic level i.
- BAF_{WLTLi} = aquatic life bioaccumulation factor with units of liter per kilogram (L/kg), as derived from 35 Ill. Adm. Code 302.570

for trophic level i.

2962				1
2963	e)	Calc	ulation of	the Lake Michigan Basin Wildlife Criterion. TSVs are obtained
2964	,			t species. The geometric mean TSVs of all mammal species is
2965			-	also of all bird species. The LMWC is the lower of the bird or
2966				netric mean TSV.
2967				
2968	(Sour	ce: Ar	nended at	: 46 Ill. Reg, effective)
2969				······································
2970	Section 302.4	580 Pi	cocedure	s for Deriving Water Quality Criteria and Values in the Lake
2971				Human Health - General
2972				
2973	a)	The	Lake Mic	higan Basin human health criteria or values for a substance are
2974	(1)			rations at which humans are protected from adverse effects resulting
2975				al exposure to, or ingestion of, the waters of Lake Michigan and
2976				of aquatic organisms taken from the waters of Lake Michigan. A
2977				n Human Health Threshold Criterion (LMHHTC) or Lake Michigan
2978			0	Threshold Value (LMHHTV) will be calculated for all substances
2979				5 Ill. Adm. Code 302.585, if data is available. Water quality
2980			-	tes for substances which are, or may be, carcinogenic to humans
2981				lculated according to procedures for the Lake Michigan Human
2982				reshold Criterion (LMHHNC) or the Lake Michigan Human Health
2983				Value (LMHHNV) in 35 Ill. Adm. Code 302.590.
2984				
2985	b)	Mini	mum data	a requirements for BAFs for Lake Michigan Basin human health
2986	-)	criter		···· 1································
2987				
2988		1)	Tier I.	
2989		,		
2990			A)	For all organic chemicals, either a field-measured BAF or a BAF
2991				derived using the BSAF methodology is required unless the
2992				chemical has a BAF less than 125, then a BAF derived by any
2993				methodology is required; and
2994				
2995			B)	For all inorganic chemicals, including organometals such as
2996			,	mercury, either a field-measured BAF or a laboratory-measured
2997				BCF is required.
2998				-
2999		2)	Tier II.	. Any bioaccumulation factor method in 35 Ill. Adm. Code
3000			302.57	0(a) may be used to derive a Tier II criterion.
3001				
3002	(Sour	ce: Ar	nended at	2 46 Ill. Reg, effective)
3003				
3004	Section 302.5	585 Pi	rocedures	s for Determining the Lake Michigan Basin Human Health

3005			ı (LMH	(HTC) and the Lake Michigan Basin Human Health Threshold
3006	Value (LMI	HHTV)		
3007				
3008				<i>is</i> derived for all toxic substances from the most sensitive end point
3009	for which the	ere exists	s a dosa	ge or concentration below which no adverse effect or response is
3010	likely to occ	ur.		
3011				
3012	a)	Minin	num dat	a requirements:
3013				
3014		1)	Tier I.	The minimum data set sufficient to derive a Tier I LMHHTC must
3015			includ	e at least one epidemiological study or one animal study of greater
3016			than 9	0 days duration; or
3017				
3018		2)	Tier II	. When the minimum data for deriving Tier I criteria are not
3019		,		ble, a more limited database consisting of an animal study of greater
3020				8 days duration must be used.
3021				5
3022	b)	Princi	ples for	development of Tier I criteria and Tier II values:
3023	,		L	1
3024		1)	The ex	xperimental exposure level representing the highest level tested at
3025		/		no adverse effects were demonstrated (NOAEL) must be used for
3026				ation of a criterion or value. In the absence of a NOAEL, a LOAEL
3027				be used if it is based on relatively mild and reversible effects;
3028				3
3029		2)	Uncer	tainty factors (UFs) must be used to account for the uncertainties in
3030		/		ting acceptable dose levels for the general human population based
3031			-	experimental animal data or limited human data:
3032			1	1
3033			A)	A UF of 10 must be used when extrapolating from experimental
3034			,	results of studies on prolonged exposure to average healthy
3035				humans;
3036				
3037			B)	A UF of 100 must be used when extrapolating from results of long-
3038			_)	term studies on experimental animals;
3039				······································
3040			C)	A UF of up to 1000 must be used when extrapolating from animal
3041			2)	studies for which the exposure duration is less than chronic, but
3042				greater than subchronic;
3043				
3044			D)	A UF of up to 3000 must be used when extrapolating from animal
3045			2)	studies for which the exposure duration is less than subchronic;
3046				studies for which the exposure duration is less than subellionic,
3047			E)	An additional UF of between one and ten must be used when
3048			-,	deriving a criterion from a LOAEL. The level of additional
5010				

	<u>1st Notice</u>	JCAR350302-2207052r01
3049 3050		uncertainty applied will depend upon the severity and the incidence of the observed adverse effect;
3051 3052 3053 3054		F) An additional UF of between one and ten must be applied when there are limited effects data or incomplete sub-acute or chronic toxicity data;
3055 3056 3057 3058	3)	The total uncertainty (\sum of the uncertainty factors) must not exceed 10,000 for Tier I criterion and 30,000 for Tier II value; and
3058 3059 3060 3061	4)	All study results must be converted to the standard unit for acceptable daily exposure of milligrams of toxicant per kilogram of body weight per day (mg/kg/day). Doses must be adjusted for continuous exposure.
3062 3063	c) Tier I	criteria and Tier II value derivation.
3064 3065 3066	1)	Determining the Acceptable Daily Exposure (ADE)
3067 3068		ADE = test value / \sum of the UFs from subsection (b)(2)
3069 3070		Where:
3071 3072 3073		acceptable daily exposure is in milligrams toxicant per kilogram body weight per day (mg/kg/day)
3074 3075 3076	2)	Determining the Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) or the Lake Michigan Basin Human Health Threshold Value (LMHHTV)
3077 3078 3079		LMHHTC or LMHHTV =
3080		{ADE x BW x RSC } /
3081 3082 3083		$\{WC + [(FC_{TL3} x BAF_{HHTL3}) + (FC_{TL4} x BAF_{HHTL4})]\}$
3084		Where:
3085		LMHHTC or LMHHTV is in milligrams per liter (mg/L)
		ADE = acceptable daily intake in milligrams toxicant per kilogram body weight per day (mg/kg/day)
		RSC = relative source contribution factor of 0.8
		BW = weight of an average human $(BW = 70 \text{ kg})$

		WC FC _{TL3}	 per capita water consumption (both drinking and incidental exposure) for surface waters classified as public water supplies = two liters/day; or per capita incidental daily water ingestion for surface waters not used as human drinking water sources = 0.01 liters/day mean consumption of trophic level 3 fish by regional sport fishers of regionally caught freshwater fish = 0.0036 kg/day 				
		FC _{TL4}	= mean consumption of trophic level 4 fish by regional sport fishers of regionally caught freshwater fish = 0.0114 kg/day				
		BAF _{HHTL3}	 human health bioaccumulation factor for edible portion of trophic level 3 fish, as derived using the BAF methodology in 35 Ill. Adm. Code 302.570 				
		BAF _{HHTL4}	 human health bioaccumulation factor for edible portion of trophic level 4 fish, as derived using the BAF methodology in 35 Ill. Adm. Code 302.570 				
3086							
3087	(Sour	ce: Amended at 46 Ill. Re	g, effective)				
3088							
3089	Section 302.	590 Procedures for Deter	rmining the Lake Michigan Basin Human Health				
2000	Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health						
3090	Nonthresho	a Criterion (LNIHHNC)	or the Lake Michigan Basin Human Health				
3090 3091		ld Criterion (LMHHNC) ld Value (LMHHNV)	or the Lake Michigan Basin Human Health				
			or the Lake Michigan Basin Human Health				
3091	Nonthresho	ld Value (LMHHNV)	or the Lake Michigan Basin Human Health ived for those toxic substances for which any exposure,				
3091 3092	Nonthresho A LMHHNO	ld Value (LMHHNV) C or LMHHNV must be der					
3091 3092 3093	Nonthresho A LMHHNC regardless of	ld Value (LMHHNV) C or LMHHNV must be der C extent, carries some risk o	ived for those toxic substances for which any exposure,				
3091 3092 3093 3094	Nonthresho A LMHHNO regardless of mechanism.	Id Value (LMHHNV) C or LMHHNV must be der Fextent, carries some risk o For single or combinations	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic				
3091 3092 3093 3094 3095	Nonthresho A LMHHNO regardless of mechanism.	Id Value (LMHHNV) C or LMHHNV must be der Fextent, carries some risk o For single or combinations	rived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must				
3091 3092 3093 3094 3095 3096	Nonthresho A LMHHNO regardless of mechanism.	Id Value (LMHHNV) C or LMHHNV must be der S extent, carries some risk o For single or combinations he purpose of determination	rived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must				
3091 3092 3093 3094 3095 3096 3097	Nonthresho A LMHHNC regardless of mechanism. be used for the	Id Value (LMHHNV) C or LMHHNV must be der C extent, carries some risk o For single or combinations he purpose of determination Minimum data requirem	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV.				
3091 3092 3093 3094 3095 3096 3097 3098	Nonthresho A LMHHNC regardless of mechanism. be used for the	Id Value (LMHHNV) C or LMHHNV must be der E extent, carries some risk o For single or combinations he purpose of determination Minimum data requirem requirements are incorpo	rived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data				
3091 3092 3093 3094 3095 3096 3097 3098 3099	Nonthresho A LMHHNC regardless of mechanism. be used for the	Id Value (LMHHNV) C or LMHHNV must be der E extent, carries some risk o For single or combinations he purpose of determination Minimum data requirem requirements are incorpo	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100	Nonthresho A LMHHNC regardless of mechanism. be used for the	Id Value (LMHHNV) C or LMHHNV must be der S extent, carries some risk o For single or combinations he purpose of determination Minimum data requirem requirements are incorpor at Appendix C II A to 40	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101	Nonthresho A LMHHNC regardless of mechanism. be used for the	Id Value (LMHHNV) C or LMHHNV must be der S extent, carries some risk o For single or combinations he purpose of determination Minimum data requirem requirements are incorpor at Appendix C II A to 40	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm.				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	Id Value (LMHHNV) C or LMHHNV must be den S extent, carries some risk of For single or combinations he purpose of determination Minimum data requirem requirements are incorport at Appendix C II A to 40 Code 301.106. Principles for development	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm.				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	Id Value (LMHHNV) C or LMHHNV must be den C extent, carries some risk of For single or combinations he purpose of determination Minimum data requirem requirements are incorport at Appendix C II A to 40 Code 301.106. Principles for development 1) Animal data are the	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm. ent of criteria or values:				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	Id Value (LMHHNV) C or LMHHNV must be der Fextent, carries some risk of For single or combinations he purpose of determination Minimum data requirem requirements are incorpor at Appendix C II A to 40 Code 301.106. Principles for development 1) Animal data are to 1986 in "Mutage	rived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm. ent of criteria or values: fitted to a linearized multistage computer model (Global nicity and Carcinogenicity Assessment for 1, 3-				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	Id Value (LMHHNV) C or LMHHNV must be den C extent, carries some risk of For single or combinations the purpose of determination Minimum data requirem requirements are incorport at Appendix C II A to 40 Code 301.106. Principles for development 1) Animal data are for 1986 in "Mutage Butadiene" Septent	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm. ent of criteria or values: fitted to a linearized multistage computer model (Global nicity and Carcinogenicity Assessment for 1, 3- ember 1985 EPA/600/8-85/004A, incorporated by				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	 Id Value (LMHHNV) C or LMHHNV must be den C extent, carries some risk of For single or combinations the purpose of determination Minimum data requirem requirements are incorport at Appendix C II A to 40 Code 301.106. Principles for development 1) Animal data are the 1986 in "Mutage Butadiene" Septent 	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm. ent of criteria or values: Ented to a linearized multistage computer model (Global nicity and Carcinogenicity Assessment for 1, 3- ember 1985 EPA/600/8-85/004A, incorporated by I. Adm. Code 301.106 or scientifically justified				
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107	Nonthresho A LMHHNC regardless of mechanism. be used for the a)	Id Value (LMHHNV) C or LMHHNV must be der Fextent, carries some risk of For single or combinations he purpose of determination Minimum data requirem requirements are incorpor at Appendix C II A to 40 Code 301.106. Principles for developme 1) Animal data are to 1986 in "Mutage Butadiene" Septer reference at 35 II equivalents). Th	ived for those toxic substances for which any exposure, f damage from cancer or a nonthreshold toxic s of substances, a risk level of 1 in 100,000 (or 10 ⁻⁵) must n of a LMHHNC or LMHHNV. ents. Minimal experimental or epidemiological data orated in the cancer classification determined by USEPA 0 CFR 132, incorporated by reference at 35 Ill. Adm. ent of criteria or values: fitted to a linearized multistage computer model (Global nicity and Carcinogenicity Assessment for 1, 3- ember 1985 EPA/600/8-85/004A, incorporated by				

3111		0	RAD); and		
3112		())		
3113		2) A	A species scaling factor	or 1	must be used to account for differences between
3114		· ·			Milligrams per surface area per day is an
3115			1		species. All doses presented in mg/kg
3116			-		erted to an equivalent surface area dose by raising
3117			he mg/kg dose to the		
3118			00		1
3119	c)	Determin	ning the risk associate	ed (dose (RAD). The RAD must be calculated using
3120	/		wing equation:		
3121			0 1		
3122		R	$RAD = 0.00001 / q_1*$		
3123			1		
3124		Where:			
3125					
			RAD	=	risk associated dose in milligrams of
					toxicant or combinations of toxicants per
					kilogram body weight per day (mg/kg/day)
			0.00001 (1 X 10 ⁻⁵)	=	incremental risk of developing cancer
					equal to 1 in 100,000
			a.*	_	slope factor (mg/kg/day) ⁻¹
			q ₁ *		
			RAD	=	risk associated dose in milligrams of
					toxicant or combinations of toxicants per
					kilogram body weight per day (mg/kg/day)
			0.00001 (1 X 10(-5))) =	incremental risk of developing cancer
					equal to 1 in 100,000
			q_1^*	=	slope factor (mg/kg/day) ⁻¹
3126			11		
3120	d)	Determin	ning the Lake Michig	50 10	Basin Human Health Nonthreshold Criterion
3128	u)			-	an Basin Human Health Nonthreshold Value
3129		(LMHH)	· · · · · · · · · · · · · · · · · · ·	mg	an Dasin Human Hearth Wonth eshold Value
3130					
3131		I	MHHNC or LMHH	NV	, =
3132		L			
3133		{	RAD x BW } / { WO	C +	- [(FC _{TL3} x BAF _{HHTL3}) + (FC _{TL4} x BAF _{HHTL4})] }
3134		(, (
3135		Where:			
3136					
				-	

LMHHNC or LMHHNV is in milligrams per liter (mg/L)

		RAD	= risk associated dose of a substance or combination of substances in milligrams per day (mg/d) which is associated with a lifetime cancer risk level equal to a ratio of 1 to 100,000
		BW	= weight of an average human $(BW = 70 \text{ kg})$
		WC	= per capita water consumption for surface waters classified as public water supplies = two liters/day, or per capita incidental daily water ingestion for surface waters not used as human drinking water sources = 0.01 liters/day
		FC _{TL3}	= mean consumption of trophic level 3 of regionally caught freshwater fish = 0.0036 kg/day
		FC _{TL4}	= mean consumption of trophic level 4 of regionally caught freshwater fish = 0.0114 kg/day
		BAF _{HHTL3,} BAF _{HHTL4}	 bioaccumulation factor for trophic levels 3 and 4 as derived in 35 Ill. Adm. Code 302.570
3137			
3138	(Sour	ce: Amended at 46 Ill	l. Reg, effective)
3139			
3140		595 Listing of Bioaco	cumulative Chemicals of Concern, Derived Criteria and
3141	Values		
3142	2)	The Assessment and	sintain a listing of terrisity suitanis and values derived and der
3143 3144	a)	- -	aintain a listing of toxicity criteria and values derived under ist must be made available to the public and updated whenever
3145		-	alue is derived and must be published when updated in the
3146		Illinois Register.	and is derived and must be published when updated in the
3147			
3148	b)	A criterion or value	published under subsection (a) may be proposed to the Board
3149	,		meric water quality standard.
3150		1	
3151	c)	The Agency must m	aintain for inspection all information including, assumptions,
3152		toxicity data and cal	culations used in the derivation of any toxicity criterion or
3153		-	t to subsection (a) until adopted by the Board as a numeric
3154		water quality standa	rd.
3155			· - · · ·
3156	(Sour	ce: Amended at 46 Ill	. Reg, effective)
3157			
3158	SUBPA	KIF: PROCEDURE	S FOR DETERMINING WATER QUALITY CRITERIA
3159 3160	Santian 200	601 Soons and Anni	an hility
3160	Section 502.	601 Scope and Appli	(Cabinty
3162	This Subpart	contains the procedur	es for determining the water quality criteria in 35 Ill. Adm.
5102		contains the procedur	es for determining the water quanty enteria in 55 m. Adm.

3163	Code 302.210(a), (b) and (c) and 302.410(a), (b) and (c).
3164	
3165	(Source: Amended at 46 Ill. Reg, effective)
3166	
3167	Section 302.603 Definitions
3168	
3169	As used in this Subpart, the following terms have the meanings specified.
3170	
3171	"Bioconcentration" means an increase in concentration of a chemical and its
3172	metabolites in an organism (or its specified tissues) relative to the concentration
3173	of the chemical in the ambient water acquired through contact with the water
3174	alone.
3175	
3176	"Carcinogen" means a chemical which causes an increased incidence of benign or
3177	malignant neoplasms, or a statistically significant decrease in the latency period
3178	between exposure and onset of neoplasms in at least one mammalian species or
3179	man through epidemiological or clinical studies.
3180	
3181	"EC-50" means the concentration of a substance or effluent which causes a given
3182	effect to 50% of the exposed organisms in a given time period.
3183	
3184	"LC-50" means the concentration of a toxic substance or effluent which is lethal
3185	to 50% of the exposed organisms in a given time period.
3186	
3187	"LOAEL" or "Lowest Observable Adverse Effect Level" means the lowest tested
3188	concentration of a chemical or substance which produces a statistically significant
3189	increase in frequency or severity of non-overt adverse effects between the
3190	exposed population and its appropriate control.
3191	
3192	"MATC" or "Maximum Acceptable Toxicant Concentration" means the value
3193	obtained by calculating the geometric mean of the lower and upper chronic limits
3194	from a chronic test. A lower chronic limit is the highest tested concentration
3195	which did not cause the occurrence of a specified adverse effect. An upper
3196	chronic limit is the lowest tested concentration which did cause the occurrence of
3197	a specified adverse effect and above which all tested concentrations caused such
3198	an occurrence.
3199	
3200	"NOAEL" or "No Observable Adverse Effect Level" means the highest tested
3201	concentration of a chemical or substance which does not produce a statistically
3202	significant increase in frequency or severity of non-overt adverse effects between
3203	the exposed population and its appropriate control.
3204	
3205	"Resident or Indigenous Species" means species which currently live a substantial
3206	portion of their lifecycle or reproduce in a given body of water, or which are

3207 3208	na	tive species whose historical range includes a given body of water.		
3209 3210	(Source:	Amended at 46 Ill. Reg, effective)		
3210 3211 3212	Section 302.604	Mathematical Abbreviations		
3212 3213 3214	This Subpart uses	s the following mathematical abbreviations:		
	exp x	base of the natural logarithm, e, raised to x-power		
	ln x	natural logarithm of x		
	log x	logarithm to the base 10 of x		
	A**B			
	SUM(1		
3215				
3216 3217	(Source:	Amended at 46 Ill. Reg, effective)		
3218	Section 302 606	Data Requirements		
3210	Section 202.000	Data Requirements		
3220	The Agency must	t review, for validity, applicability and completeness, data used in calculating		
3220		xtent available, and to the extent not otherwise specified, testing procedures,		
3222		pecies and other aspects of data acquisition must be according to methods		
3223				
3223	published by USEPA or nationally recognized standards organizations, including methods found in "Standard Methods", incorporated by reference in 35 Ill. Adm. Code 301.106.			
3225	III Standard Wet	nous, meorpolated by reference in 55 m. Adm. Code 501.100.		
3225	(Source:	Amended at 46 Ill. Reg, effective)		
3220	(Source.	, encentre)		
3227	Section 302 612	Determining the Acute Aquatic Toxicity Criterion for an Individual		
3228	Substance - Gen			
3230	Substance - Och			
3230	a) A	chemical specific Acute Aquatic Toxicity Criterion (AATC) is calculated using		
3231		ocedures specified in 35 Ill. Adm. Code 302.615 and 302.618 if acute toxicity		
3232	-	ta are available for at least five resident or indigenous species from five		
3233		fferent North American genera of freshwater organisms including		
3235		presentatives of the following taxa:		
3235		secondarives of the following taxa.		
3230	1)	D opresentatives of two families in the Class Ostaichthyses (Dopy Fishes)		
3237	1)	Representatives of two families in the Class Osteichthyes (Bony Fishes).		
3238	2)	The family Dephyidee		
	2)	The family Daphnidae.		
3240	2)	A hanthia aquatia magnainy antahnata		
3241	3)	A benthic aquatic macroinvertebrate.		
3242	4)	A responsible equation plant on a third for the instant of the Distance (the state of the		
3243	4)			
3244		may be from the Class Osteichthyes.		
3245				

3246 3247 3248 3249 3250 3251 3252 3253	b)	If data are not available for resident or indigenous species, data for non-resident species may be used if the non-resident species is of the same family or genus and has a similar habitat and environmental tolerance. The procedures of 35 Ill. Adm. Code 302.615 must be used to obtain an AATC for individual substances whose toxicity is unaffected by ambient water quality characteristics. The procedures of 35 Ill. Adm. Code 302.618 must be used if the toxicity of a substance is dependent upon some other water quality characteristic.				
3254	c)	If data are not available that meet the requirements of subsection (a), an AATC is				
3255	•)	calculated by obtaining at least one EC-50 or LC-50 value from both a daphnid				
3256		species and either fathead minnow or bluegill. If there are data available for any				
3250		other North American freshwater species, they must also be included. An AATC				
3258		is calculated by dividing the lowest Species Mean Acute Value (SMAV), as				
3259		determined according to 35 Ill. Adm. Code 302.615, by 10.				
3260						
3261	(Sour	rce: Amended at 46 Ill. Reg, effective)				
3262	(2004)					
3263	Section 302.	615 Determining the Acute Aquatic Toxicity Criterion – Toxicity Independent				
3264	of Water Ch					
3265						
3266	If the acute t	oxicity of the chemical has not been shown to be related to a water quality				
3267	characteristic, including hardness, pH, temperature, etc., the AATC is calculated by using the					
3268	procedures below.					
3269	-					
3270	a)	For each species for which more than one acute value is available, the Species				
3271		Mean Acute Value (SMAV) is calculated as the geometric mean of the acute				
3272		values from all tests.				
3273						
3274	b)	For each genus for which one or more SMAVs are available, the Genus Mean				
3275		Acute Value (GMAV) is calculated as the geometric mean of the SMAVs				
3276		available for the genus.				
3277						
3278	c)	The GMAVs are ordered from high to low.				
3279						
3280	d)	Ranks (R) are assigned to the GMAVs from "l" for the lowest to "N" for the				
3281		highest. If two or more GMAVs are identical, successive ranks are arbitrarily				
3282		assigned.				
3283						
3284	e)	The cumulative probability, P, is calculated for each GMAV as $R/(N + 1)$.				
3285	_					
3286	f)	The GMAVs to be used in the calculations of subsection (g) must be those with				
3287		cumulative probabilities closest to 0.05. If there are less than 59 GMAVs in the				
3288		total data set, the values utilized must be the lowest obtained through the ranking				
3289		procedures of subsections (c) and (d). "T" is the number of GMAV's which are to				

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300		be used in the calculations of subsection (g). T is equal to 4 when the data set includes at least one representative from each of the five taxa in 35 Ill. Adm. Code 302.612 and a representative from each of the three taxa listed below. T is equal to 3 when the data includes at least one representative from each of the five taxa in 35 Ill. Adm. Code 302.612 and from one or two of the taxa listed below. T is equal to 2 when the data set meets the minimum requirements of 35 Ill. Adm. Code 302.612 but does not include representatives from any of the three taxa listed below are available, they must be used along with the minimum data required pursuant to 35 Ill. Adm. Code 302.612.
3301 3302 3303		 A benthic crustacean, unless one was used under 35 Ill. Adm. Code 302.612(a)(3), in which case an insect must be used.
3304 3305		2) A member of a phylum not used in subsections (a), (b) or (f)(1).
3306 3307		3) An insect from an order not already represented.
3308	g)	Using the GMAVs and T-value identified under subsection (f) and the Ps
3309	5)	calculated under subsection (e), the Final Acute Value (FAV) and the AATC are
3310		calculated as:
3311		
5511		FAV = exp(A) and
		AATC = FAV/2
3312		
3313		Where:
3314		
		A = L + 0.2236 S;
		$L = [SUM(1n GMAV) - S(SUM(P^{**}0.5))]/T; and$
		$S = [[SUM((1n GMAV)^{**2}) - ((SUM(1n GMAV)^{**2})) - ((SUM(1n GMAV)^{**2})) - ((SUM(1n GMAV)^{**2})$
		GMAV))**2)/T]/[SUM(P) -
2215		((SUM(P**0.5))**2)/T]]**0.5
3315	1 \	
3316	h)	If a resident or indigenous species, whose presence is necessary to sustain
3317		commercial or recreational activities, or prevent disruptions of the waterbody's
3318		ecosystem, including loss of species diversity or a shift to a biotic community
3319		dominated by pollution-tolerant species, will not be protected by the calculated
3320		FAV, then the EC-50 or LC-50 for that species is used as the FAV.
3321	(9	and Amondad at 46 III Dag affective
3322 3323	(Sour	rce: Amended at 46 Ill. Reg, effective)
3323 3324	Section 302	618 Determining the Acute Acustic Toxisity Oritorian Toxisity Dependent on
3324 3325	Water Chen	618 Determining the Acute Aquatic Toxicity Criterion - Toxicity Dependent on
3325 3326		11511 y
5520		

JCAR350302-2207052r01

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338	(WQC) and a may be calcu characteristic and acute tox for any varial hardness aga: and other wa including no least squares	railable to show that a relationship exists between a water quality characteristic acute toxicity to two or more species, an Acute Aquatic Toxicity Criterion (AATC) lated. The best documented relationship is that between the water quality c, hardness and acute toxicity of metals. Although this relationship between hardness ticity is typically non-linear, it can be linearized by a logarithmic transformation (i.e. ble, K, $f(K) = logarithm of K$) of the variables and plotting the logarithm of inst the logarithm of acute toxicity. Similarly, relationships between acute toxicity ter quality characteristics, such as pH or temperature, may require a transformation, transformation (i.e. for any variable, K, $f(K) = K$) for one or both variables to obtain linear regression of the transformed acute toxicity values on the transformed values quality characteristic. An AATC is calculated using the following procedures:
3339	a)	For each species for which acute toxicity values are available at two or more
3340		different values of the water quality characteristic, a linear least squares
3341		regression of the transformed acute toxicity (TAT) values on the transformed
3342		water quality characteristic (TWQC) values is performed to obtain the slope of the
3343		line describing the relationship.
3344		
3345	b)	Each of the slopes determined pursuant to subsection (a) is evaluated as to
3346		whether or not it is statistically valid, taking into account the range and number of
3347		tested values of the water quality characteristic and the degree of agreement
3348		within and between species. If slopes are not available for at least one fish and
3349		one invertebrate species, or if the available slopes are too dissimilar, or if too few
3350		data are available to define the relationship between acute toxicity and the water
3351		quality characteristic, then the AATC must be calculated using the procedures in
3352		35 Ill. Adm. Code 302.615.
3353		
3354	c)	Normalize the TAT values for each species by subtracting W, the arithmetic mean
3355		of the TAT values of a species from each of the TAT values used in the
3356		determination of the mean, such that the arithmetic mean of the normalized TAT
3357		values for each species individually or for any combination of species is zero
3358		(0.0).
3359		
3360	d)	Normalize the TWQC values for each species using X, the arithmetic mean of the
3361		TWQC values of a species, in the same manner as in subsection (c).
3362		
3363	e)	Group all the normalized data by treating them as if they were from a single
3364		species and perform at least squares linear regression of all the normalized TAT
3365		values on the corresponding normalized TWQC values to obtain the pooled acute
3366		slope, V.
3367		
3368	f)	For each species, the graphical intercept representing the species TAT intercept,
3369	,	f(Y), at a specific selected value, Z, of the WQC is calculated using the equation:
3370		

3371		f(Y) = W - V(X - g(Z))
3372		
3373		Where:
3374		
3375		f() is the transformation used to convert acute toxicity values to TAT
3376		values;
3377		· uiuo5,
3378		Y is the species acute toxicity intercept or species acute intercept;
3379		T is the species dedic toxicity intercept of species dedic intercept,
3380		W is the arithmetic mean of the TAT values as specified in subsection (c);
3380 3381		w is the arthinetic mean of the TAT values as specified in subsection (c),
3382		
		V is the needed couts slope as specified in subsection (a).
3383		V is the pooled acute slope as specified in subsection (e);
3384		V is the still we the second of the TWOC sectors are still in sectors the
3385		X is the arithmetic mean of the TWQC values as specified in subsection
3386		(d);
3387		
3388		g() is the transformation used to convert the WQC values to TWQC
3389		values; and
3390		
3391		Z is a selected value of the WQC.
3392		
3393	g)	For each species, determine the species acute intercept, Y, by carrying out an
3394		inverse transformation of the species TAT value, $f(Y)$. For example, in the case
3395		of a logarithmic transformation, $Y = antilogarithm of (f(Y))$; or in the case where
3396		no transformation is used, $Y = f(Y)$.
3397		
3398	h)	The Final Acute Intercept (FAI) is derived by using the species acute intercepts,
3399		obtained from subsection (g), in compliance with the procedures described in 35
3400		Ill. Adm. Code 302.615(b) through (g), with the word "value" replaced by the
3401		word "intercept". Note that in this procedure geometric means and natural
3402		logarithms are always used.
3403		
3404	i)	The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two.
3405		
3406	j)	The AATC at any value of the WQC, denoted by WQCx, is calculated using the
3407		terms defined in subsection (f) and the equation:
3408		
3409		AATC = exp[V (g(WQCx) - g(Z)) + f (AAI)].
3410		
3411	(Sour	ce: Amended at 46 Ill. Reg, effective)
3412	Ň	
3413	Section 302.	621 Determining the Acute Aquatic Toxicity Criterion - Procedure for
3414		ns of Substances

3415				
3416	An AATC for any combination of substances (including effluent mixtures) must be determined			
3417	by the following toxicity testing procedures:			
3418	by the follow	ing toxi	iony testing procedures.	
3419	a)	Not w	nore than 50% of test organisms from the most sensitive species tested may	
3420	a)		it mortality or immobility after a 48-hour test for invertebrate or a 96-hour	
3421			or fishes.	
3421		lest IC	1 1151105.	
	1.)	T1	and dent on indiana and an of a set of significant diverge taxes and the tested	
3423	b)		e resident or indigenous species of ecologically diverse taxa must be tested	
3424			ly. If resident or indigenous species are not available for testing, non-	
3425			ent species may be used if the non-resident species is of the same family or	
3426		genus	and has a similar habitat and environmental tolerance.	
3427				
3428	(Sourd	ce: Am	ended at 46 Ill. Reg, effective)	
3429				
3430			termining the Chronic Aquatic Toxicity Criterion for an Individual	
3431	Substance - (Genera	l Procedures	
3432				
3433	a)		emical-specific Chronic Aquatic Toxicity Criterion (CATC) is calculated	
3434		0	procedures specified in subsection (b) when chronic toxicity data are	
3435		availa	ble for at least five species from five different North American genera of	
3436		freshv	water organisms, including representatives from the following taxa:	
3437				
3438		1)	Representatives of two families in the Class Osteichthyes (Bony Fishes).	
3439				
3440		2)	The family Daphnidae.	
3441				
3442		3)	A benthic aquatic macroinvertebrate.	
3443				
3444		4)	An alga (96-hour test) or a vascular aquatic plant.	
3445		,		
3446	b)	A CA	TC is derived in the same manner as the FAV in 35 Ill. Adm. Code 302.615	
3447	-)		2.618 by substituting CATC for FAV or FAI, chronic for acute, MATC for	
3448			0, SMCV (Species Mean Chronic Value) for SMAV, and GMCV (Genus	
3449			Chronic Value) for GMAV.	
3450		mean		
3451	c)	If data	a are not available to meet the requirements of subsection (a), a CATC is	
3452	0)		lated by dividing the FAV by the highest acute-chronic ratio obtained from	
3453			st one fish and one invertebrate species. The acute-chronic ratio for a	
3454			es equals the acute toxicity concentration from data considered under 35 Ill.	
3455		-	1	
3435 3456			Code 302.612 through 302.618, divided by the chronic toxicity	
			entration from data calculated under subsections (a) and (b) subject to the	
3457		101100	ving conditions:	
3458				

3459 3460 3461 3462		1)	If the toxicity of a substance is related to any water quality characteristic (WQC), the acute-chronic ratio must be based on acute and chronic toxicity data obtained from organisms exposed to test water with WQC values that are representative of the WQC values of the waterbody under
3463 3464 3465			consideration. Preference under this subsection must be given to data from acute and chronic tests done by the same author or in the same reference in order to increase the likelihood of comparable test conditions.
3466			
3467		2)	If the toxicity of a substance is unrelated to water quality parameters, the
3468			acute-chronic ratio may be derived from any acute and chronic test on a
3469			species regardless of the similarity in values of those water quality
3470			parameters. Preference under this subsection must be given to data from
3471			acute and chronic tests done on the same organisms or their descendants.
3472			C C
3473		3)	If there is more than one acute-chronic ratio for a species, a geometric
3474		,	mean of the ratio is calculated, corrected for the relationship of toxicity to
3475			water quality parameters.
3476			
3477		4)	If the acute and chronic toxicity data indicate that the acute-chronic ratio
3478		,	varies with changes in water quality parameters, the acute-chronic ratio
3479			used over specified values of the water quality parameters must be based
3480			on the ratios at water quality parameter values closest to those specified.
3481			
3482		5)	If acute and chronic toxicity data are unavailable to determine an acute-
3483		/	chronic ratio for at least two North American freshwater species, a ratio of
3484			25 must be used.
3485			
3486	d)	If a re	esident or indigenous species whose presence is necessary to sustain
3487	,		nercial or recreational activities, or prevent disruptions of the waterbody's
3488			stem, including but not limited to loss of species diversity or a shift to a
3489			c community dominated by pollution-tolerant species, will not be protected
3490			e calculated CATC, then the MATC for that species is used as the CATC.
3491		2	
3492	(Sour	ce: An	nended at 46 Ill. Reg, effective)
3493	× ×		
3494	Section 302.	630 De	etermining the Chronic Aquatic Toxicity Criterion - Procedure for
3495	Combinatio		
3496			
3497	A CATC for	anv coi	mbination of substances (including effluent mixtures) may be determined by
3498		•	edures pursuant to the following:
3499		0 F	1
3500	a)	A coi	mbination of substances must not exceed concentrations greater than a
3501	,		EL as determined for the most sensitive of the species tested.
3502			······································

3503	b)	Three	resident or indigenous species of ecologically diverse taxa must be tested
3504	,	initiall	ly. If resident or indigenous species are not available for testing, non-
3505			nt species may be used if the non-resident species is of the same family or
3506			and has a similar habitat and environmental tolerance.
3507		U	
3508	(Sourc	e: Am	ended at 46 Ill. Reg, effective)
3509	(20042		, circon e
3510	Section 302.6	533 The	e Wild and Domestic Animal Protection Criterion
3511			
3512	The Wild and	Domes	tic Animal Protection Criterion (WDAPC) is the concentration of a
3512			ot exceeded protects Illinois wild and domestic animals from adverse
3513			ional impairment or pathological lesions, resulting from ingestion of surface
3515			In d from ingestion of aquatic organisms taken from surface waters of the
3515	State.		a nom ingestion of aquatic organisms taken nom surface waters of the
3510	State.		
	2)	Ean th	as substances for which a NOAEL has been derived from studies of
3518	a)		ose substances for which a NOAEL has been derived from studies of
3519			nalian or avian species exposed to the substance via oral routes including
3520			e, the lowest NOAEL among species must be used in calculating the
3521		WDA	PC. Additional considerations in selecting NOAEL include:
3522		1	
3523		1)	If the NOAEL is given in milligrams of toxicant per liter of water
3524			consumed (mg/L), prior to calculating the WDAPC, the NOAEL must be
3525			multiplied by the daily average volume of water consumed by the test
3526			animals in liters per day (L/d) and divided by the average weight of the
3527			test animals in kilograms (kg).
3528			
3529		2)	If the NOAEL is given in milligrams of toxicant per kilogram of food
3530			consumed (mg/kg), prior to calculating the WDAPC, the NOAEL must be
3531			multiplied by the average amount of food in kilograms consumed daily by
3532			the test animals (kg/d) and divided by the average weight of the test
3533			animals in kilograms (kg).
3534			
3535		3)	If the animals used in a study were not exposed to the toxicant each day of
3536			the test period, the NOAEL must be multiplied by the ratio of days of
3537			exposure to the total days in the test period.
3538			
3539		4)	If more than one NOAEL is available for the same animal species, the
3540		,	geometric mean of the NOAELs must be used to calculate the WDAPC.
3541			
3542	b)	For the	ose substances for which a NOAEL is not available but the lowest observed
3543	- /		se effect level (LOAEL) has been derived from studies of animal species
3544			ed to the substance via oral routes including gavage, one-tenth of the
3545			EL must be substituted for the NOAEL.
3546		_ 31 IL	

	<u>1st Notic</u>	<u>e</u> JCAR350302-2207052r01
3547 3548	c)	The LOAEL must be selected in the same manner as that specified for the NOAEL in subsection (a).
3549 3550 3551	d)	The WDAPC, measured in milligrams per liter (mg/L), is calculated according to the equation:
3552 3553 3554		WDAPC = [0.1 NOAEL x Wt]/[W + (F x BCF)]
3555 3556		Where:
		NOAEL is derived from mammalian or avian studies as specified in subsections (a) and (b), and is measured in units of milligrams of substance per kilogram of body weight per day (mg/kg-d); Wt = Average weight in kilograms (kg) of the test animals;
		 W = Average daily volume of water in liters consumed per day (l/d) by the test animals; F = Average daily amount of food consumed by the test animals in kilograms (kg/d);
		BCF = Aquatic life Bioconcentration Factor with units of liter per kilogram (L/kg), as derived in 35 Ill. Adm. Code 302.660 through 302.666; and
		The 0.1 represents an uncertainty factor to account for species variability.
3557 3558 3559 3560	e)	If no studies pertaining to the toxic substance in question can be found by the Agency, no criterion can be determined.
3561	(Sourc	ce: Amended at 46 Ill. Reg, effective)
3562 3563	Section 302.6	645 Determining the Acceptable Daily Intake
3564 3565 3566 3567 3568	daily for a life	ble Daily Intake (ADI) is the maximum amount of a substance which, if ingested etime, results in no adverse effects to humans. Subsections (a) through (e) list, in reference, methods for determining the acceptable daily intake.
3569	a)	The lowest of the following ADI values:
3570 3571 3572 3573 3574 3575 3576		1) For substances listed with a maximum contaminant level in 40 CFR 141, incorporated by reference in 35 Ill. Adm. Code 301.106, or in 35 Ill. Adm. Code 611, the ADI equals the product of multiplying the maximum contaminant level given in milligrams per liter (mg/L) by 2 liters per day (L/d).
3577		2) For substances which are listed with a maximum allowable concentration

3578			standard in 35 Ill. Adm. Code Subtitle F, the acceptable daily intake
3579			equals the product of multiplying the public health enforcement standard
3580			given in milligrams per liter (mg/L) by 2 liters per day (L/d) .
3581			
3582	b)	For su	ubstances for which a no observed adverse effect level (NOAEL-H) for
3583	,		ns exposed to the substance in drinking water has been derived, the
3584			table daily intake equals the product of multiplying one-tenth of the
3585		1	EL-H given in milligrams of toxicant per liter of water consumed (mg/L), by
3586			rs per day (L/d) . The lowest NOAEL-H must be used in the calculation of
3587			ceptable daily intake.
3588			
3589	c)	For si	ubstances for which the lowest observed adverse effect level (LOAEL-H) for
3590	0)		ns exposed to the substance in drinking water has been derived, one-
3591			redth of the LOAEL-H may be substituted for the NOAEL-H in subsection
3592		(b).	
3593		(0).	
3594	d)	For si	ubstances for which a no observed adverse effect level (NOAEL-A) has been
3595	ч)		ed from studies of mammalian test species exposed to the substance via oral
3596			s including gavage, the acceptable daily intake equals the product of
3597			plying 1/100 of the NOAEL-A given in milligrams toxicant per day per
3598		-	arm of test species weight (mg/kg-d) by the average weight of an adult
3599		•	n of 70 kilograms (kg). The lowest NOAEL-A among animal species must
3600			ed in the calculation of the acceptable daily intake. Additional
3601			derations in selecting the NOAEL-A include:
3602			
3603		1)	If the NOAEL-A is given in milligrams of toxicant per liter of water
3604)	consumed (mg/L) then, prior to calculating the acceptable daily intake, the
3605			NOAEL-A must be multiplied by the daily average volume of water
3606			consumed by the mammalian test species in liters per day (L/d) and
3607			divided by the average weight of the mammalian test species in kilograms
3608			(kg).
3609			
3610		2)	If the NOAEL-A is given in milligrams of toxicant per kilogram of food
3611			consumed (mg/kg), prior to calculating the acceptable daily intake the
3612			NOAEL-A must be multiplied by the average amount in kilograms of food
3613			consumed daily by the mammalian test species (kg/d) and divided by the
3614			average weight of the mammalian test species in kilograms (kg).
3615			
3616		3)	If the mammalian test species were not exposed to the toxicant each day of
3617			the test period, the NOAEL-A must be multiplied by the ratio of days of
3618			exposure to the total days of the test period.
3619			
3620		4)	If more than one NOAEL-A is available for the same mammalian test
3621			species, the geometric mean of the NOAEL-As must be used.

3622 3623 3624 3625 3626 3627 3628 3629	e)	For substances for which a NOAEL-A is not available but the lowest observed adverse effect level (LOAEL-A) has been derived from studies of mammalian test species exposed to the substance via oral routes including gavage, one-tenth of the LOAEL-A may be substituted for the NOAEL-A in subsection (d). The LOAEL- A must be selected in the same manner as that specified for the NOAEL-A in subsection (d).
3630 3631 3632	f)	If no studies pertaining to the toxic substance in question can be found by the Agency, no criterion can be determined.
3633 3634	(Sourc	e: Amended at 46 Ill. Reg, effective)
3635 3636	Section 302.64	48 Determining the Human Threshold Criterion
3637 3638	The HTC is ca	lculated according to the equation:
3639 3640	HTC =	ADI/[W + (F x BCF)]
3641		where:
3642		HTC = Human health protection criterion in milligrams per liter (mg/L);
		ADI = Acceptable daily intake of substance in milligrams per day (mg/d) as specified in 35 Ill. Adm. Code 302.645;
		 W = Per capita daily water consumption equal to 2 liters per day (L/d) for surface waters at the point of intake of a public or food processing water supply, or equal to 0.01 liters per day (L/d) which represents incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities for areas which are determined to be public access areas under 35 Ill. Adm. Code Section 302.102 (b)(3), or 0.001 liters per day (L/d) for other waters;
		F = Assumed daily fish consumption in the United States equal to 0.020 kilograms per day (kg/d); and
		BCF = Aquatic organism Bioconcentration Factor with units of liter per kilogram (L/kg) as derived in 35 Ill. Adm. Code 302.660 through 302.666.
3643 3644	(Course	
3644 3645	(Sourc	e: Amended at 46 Ill. Reg, effective)

3646 3647	Section 302.	651 The Human Nonthreshold Criterion					
3648	The Human Nonthreshold Criterion (HNC) of a substance is that concentration or level of a						
3649	substance at which humans are protected from an unreasonable risk of disease caused by a						
3650	nonthreshold toxic mechanism as a result of incidental exposure to or ingestion of surface waters						
3651	of the State and from ingestion of aquatic organisms taken from surface waters of the State.						
3652		HNCs are derived for those toxic substances for which any exposure, regardless of extent,					
3653	carries some risk of damage as specified in subsections (a) and (b).						
3654							
3655	a)	For single substances, a risk level of one in one million (1 in 1,000,000) must be					
3656	u)	allowed (i.e, considered acceptable) for the purposes of determining an HNC.					
3657							
3658	b)	For mixtures of substances, an additive risk level of one in one hundred thousand					
3659	0)	(1 in 100,000) must be allowed (i.e, considered acceptable) for the purposes of					
3660		determining an HNC.					
3661							
3662	(Sour	rce: Amended at 46 Ill. Reg, effective)					
3663	(Sour	ce. Amended at 40 m. Reg, encenve)					
3664	Section 302	654 Determining the Risk Associated Intake					
3665	Section 302.	054 Deter mining the Risk Associated Intake					
3666	The Risk As	sociated Intake (RAI) is the maximum amount of a substance which if ingested daily					
3667		is expected to result in the risk of one additional case of human cancer in a					
3668							
3669	population of one million. Where more than one carcinogenic chemical is present, the RAI must be based on an allowed additive risk of one additional case of cancer in a population of one						
3670	hundred thousand. The RAI must be derived as specified in subsections (a) through (c).						
3671	nundred thou	isand. The KAI must be derived as specified in subsections (a) unough (c).					
3672	a)	For those substances for which a human epidemiologic study has been performed,					
3673	aj	the RAI equals the product of the dose from exposure in units of milligrams					
3674		toxicant per kilogram body weight per day (mg/kg-d) that results in a 70-year					
3675		lifetime cancer probability of one in one million, times the average weight of an					
3676		adult human of 70 kilograms (kg). The resulting RAI is expressed in milligrams					
3677							
3678		toxicant per day (mg/d). If more than one human epidemiologic study is available, the lowest exposure level resulting in a 70-year lifetime probability of					
3679		cancer equal to a ratio of one in one hundred thousand must be used in calculating					
3680		the RAI.					
3681							
3682	b)	In the absence of an epidemiologic study, for those toxic substances for which a					
	0)						
3683 3684		carcinogenic potency factor (CPF) has been derived from studies of mammalian					
		test species the risk associated intake is calculated from the equation:					
3685		$\mathbf{D} \mathbf{A} \mathbf{I} - \mathbf{V} / \mathbf{C} \mathbf{D} \mathbf{E}$					
3686		RAI = K/CPF					
3687		Wherea					
3688		Where:					
3689							

		RAI = Risk associated intake in milligrams per day (mg/d);
		K = A constant consisting of the product of the average weight of an adult human, assumed to be 70 kg, and the allowed cancer risk level of one in one million (1/1,000,000); and
		CPF = Carcinogenic Potency Factor is the risk of one additional cancer per unit dose from exposure. The CPF is expressed in units of inverse milligrams per kilogram - day (l/mg/kg-d) as derived in subsections (b)(1) through (b)(7).
3690		
3691	1)	Only those studies which fulfill the data requirement criteria of 35 Ill.
3692		Adm. Code 302.606 must be used in calculating the CPF.
3693		
3694	2)	The linear non-threshold dose-response relationship developed in the same
3695		manner as in the USEPA document "Mutagenicity and Carcinogenicity
3696		Assessment of 1,3-butadiene", incorporated by reference in 35 Ill. Adm.
3697		Code 301.106, must be used in obtaining the unit risk, defined as the 95th
3698		percentile upper bound risk of one additional cancer resulting from a life
3699		time exposure to a unit concentration of the substance being considered.
3700		The CPF must be estimated from the unit risk in compliance with
3701		subsection (b)(7). In calculating a CPF, the Agency must review alternate
3702		scientifically valid protocols if so requested.
3703	2	
3704	3)	If in a study of a single species more than one type of tumor is induced by
3705		exposure to the toxic substance, the highest of the CPFs is used.
3706	1)	If the an income starting starting with an encoding starting on easy of the test
3707	4)	If two or more studies vary in either species, strain or sex of the test
3708 3709		animal, or in tumor type, the highest CPF is used.
	5)	If more than one tumor of the same tumo is found in some of the test
3710 3711	5)	If more than one tumor of the same type is found in some of the test animals, these should be pooled so that the dose response relationship is
3711		dose versus number of tumors per animal. The potency estimate for this
3712		dose response relationship is used if it is higher than estimates resulting
3714		from other methods.
3715		nom other methods.
3716	6)	If two or more studies are identical regarding species, strain and sex of the
3717	0)	test animal, and tumor type, the highest of the CPFs is used.
3718		test annual, and tanior type, the ingliest of the CITS is used.
3719	7)	Calculation of an equivalent dose between animal species and humans
3720	')	using a surface area conversion, and conversion of units of exposure to
3721		dose in milligrams of toxicant per kilogram of body weight per day
3722		(mg/kg-d) must be performed as specified in the USEPA document
3723		"Mutagenicity and Carcinogenicity Assessment of 1,3-butadiene",
3724		incorporated by reference in 35 Ill. Adm. Code 301.106.

3725				
3726	c)			h a human epidemiologic study and a study of mammalian test species are
3727				ble for use in subsections (a) and (b), the risk associated intake is
3728		det	tern	nined as follows:
3729				
3730		1)		When the human epidemiologic study provides evidence of a carcinogenic
3731				effect on humans, the RAI is calculated from the human epidemiology
3732				study as specified in subsection (a).
3733		2)		
3734		2)		When the mammalian study provides evidence a carcinogenic effect on
3735 3736				humans, but the human epidemiologic study does not, a cancer risk to
3730				humans is assumed and the risk associated intake is calculated as specified in subsection (b).
3738				in subsection (b).
3739	(So	ource:	Am	ended at 46 Ill. Reg, effective)
3740	(22			, • • • • • • • • • • • • • • • • • • •
3741	Section 30	2.657	Det	termining the Human Nonthreshold Criterion
3742				
3743	The HNC i	is calcu	ilate	ed according to the equation:
3744				
3745				$HNC = RAI/[W + (F \times BCF)]$
3746	_			
3747	wh	ere:		
3748		INIC		
		HNC		Human Nonthreshold Protection Criterion in milligrams per liter $(m \alpha^{(I)})$
			((mg/L);
		RAI	=]	Risk Associated Intake of a substance in milligrams per day (mg/d)
				which is associated with a lifetime cancer risk level equal to a ratio
			(of one to 1,000,000 as derived in 35 Ill. Adm. Code 302.654;
		W	= 1	Per capita daily water consumption equal to 2 liters per day (L/d)
		••		for surface waters at the point of intake of a public or food
				processing water supply, or equal to 0.01 liters per day (L/d) which
				represents incidental exposure through contact or ingestion of small
				volumes of water while swimming or during other recreational
				activities for areas which are determined to be public access areas
				under 35 Ill. Adm. Code 302.102(b)(3), or 0.001 liters per day (L/d)
				for other waters;
		Б	_	A service of the life field as a service of the United States 14, 0,000
		F		Assumed daily fish consumption in the United States equal to 0.020
			J	kilograms per day (kg/d); and
		BCF	= ,	Aquatic Life Bioconcentration Factor with units of liter per
			1	kilogram (L/kg) as derived in 35 Ill. Adm. Code 302.663.
3749				

JCAR350302-2207052r01

3750	(Sourc	e: Am	ended at 46 Ill. Reg	, effective)
3751	~				
3752	Section 302.6	58 Str	eam Flow for Application	on of Human Nonth	reshold Criterion
3753		1. (11	· 1 1 0	1 4 4 1 .
3754				eriods when flows are	e less than the harmonic mean
3755	flow (Qhm), a	as deteri	mined by:		
3756		01	$\mathbf{N} / \mathbf{OID} \mathbf{I} / \mathbf{O}'$		
3757		Qnm =	= N / SUM(1/Qi)		
3758	W/h are				
3759	Where	ð:			
3760		Ohm	= harmonic mean flo	XXX /	
		Qhm N	= number of daily va		and
		Qi	= daily streamflow v		s, and
3761		QI	- daily succlimitow v	alue oli day 1.	
3762	(Sour	re∙∆m	ended at 46 Ill. Reg	effective)
3763	(Sour		ended at 40 m. Reg	, encenve)
3764	Section 302.6	63 Def	termination of Bioconce	entration Factors	
3765					
3766	A Bioconcent	ration F	Factor equals the concent	ration of a substance	in all or part of an aquatic
3767			1		divided by the concentration
3768	U	•	1 0		nilligrams of the substance per
3769	liter of water		-		iningrame of the substance per
3770		(8):			
3771	a)	The B	ioconcentration Factor is	calculated from a fie	eld study if the following
3772)		ions are met:		5 6
3773					
3774		1)	Data are available to sh	ow that the concentra	ation of the substance in the
3775		,	water to which the orga	nism was exposed re	mained constant over the
3776			range of territory inhabi		
3777			exceeding 28 days;		
3778					
3779		2)	Competing mechanisms	s for removal of the s	ubstance from solution did not
3780			affect the bioavailability	y of the substance; ar	nd
3781					
3782		3)			the organism was exposed is
3783				centration causing an	ny adverse effects on the
3784			organism.		
3785					
3786	b)				actor, the Bioconcentration
3787		Factor	is calculated from a labo	pratory test if the foll	owing conditions are met:
3788		1 \			
3789		1)			from measured concentrations
3790			of the toxic substance in	n the test solution;	

3791			
3792		2)	The laboratory test was of sufficient duration to have reached steady-state
3793		,	which is defined as a less than 10 percent change in the calculated
3794			Bioconcentration Factor over a 2-day period or 16 percent of the test
3795			duration whichever is longer. In the absence of a laboratory test which has
3796			reached steady-state, the Bioconcentration Factor may be calculated from
3797			a laboratory test with a duration greater than 28 days if more than one test
3798			is available for the same species of organism;
3799			is available for the same species of organism,
3800		3)	The concentration of the toxic substance to which the test organism was
3800		3)	exposed is less than the lowest concentration causing any adverse effects
3802			
3802			on the organism;
		4)	If more than and Disconcentration Easter for the same marine is evailable
3804		4)	If more than one Bioconcentration Factor for the same species is available,
3805			the geometric mean of the Bioconcentration Factors is used; and
3806		7)	
3807		5)	The Bioconcentration Factor is calculated on a wet tissue weight basis. A
3808			Bioconcentration Factor calculated using dry tissue weight must be
3809			converted to a wet tissue weight basis by multiplying the dry weight
3810			bioconcentration value by 0.1 for plankton and by 0.2 for individual
3811			species of fishes and invertebrates.
3812			
3813	c)		absence of any Bioconcentration Factors measured from field studies as
3814		-	ed in subsection (a) or laboratory studies which have reached steady-state
3815		as spec	cified in subsection (b), the Bioconcentration Factor is calculated according
3816		to the	equation:
3817			
3818			$\log BCF = A + B \log Kow$
3819			
3820			Where:
3821			
3822			BCF = Bioconcentration Factor;
3823			
3824			Kow = The octanol/water partition coefficient measured as
3825			specified in ASTM E 1147, incorporated by reference in 35 Ill.
3826			Adm. Code 301.106 (If the Kow is not available from laboratory
3827			testing, it must be calculated from structure-activity relationships
3828			or available regression equations.); and
3829			
3830			The constants $A = -0.23$ and $B = 0.76$ must be used unless a
3831			change in the value of the constants is requested (The Agency must
3832			honor requests for changes only if such changes are accompanied
3833			by scientifically valid supporting data.).
3833			by scientificarry varia supporting data. j.
JUJ T			

3835 3836	(Sourc	e: Ame	ended at	t 46 Ill. Reg, effective)	
3830	Section 302 6	66 Uti	lizing th	ne Bioconcentration Factor	
3838	Section 302.0		nzing ti		
3839	The Bioconce	ntration	Factor	derived in 35 III Adm. Code 302 663 is used to calculate water	
3840	The Bioconcentration Factor derived in 35 Ill. Adm. Code 302.663 is used to calculate water quality criteria for a substance as specified below:				
3841	quality effective	a 101 a s	uostane	e as specified below.	
3842	a)	When	calculat	ting a WDAPC as described in 35 Ill. Adm. Code 302.633, the	
3843	a)			an of all available steady-state whole body Bioconcentration Factors	
3844		-		all fish species which constitutes or represents a portion of the diet	
3845				wild and domestic animal species is used. Additional considerations	
3846			-	Bioconcentration Factor include:	
3847		in den	ving a i	sideoneentration i actor mendae.	
3848		1)	An edi	ble portion Bioconcentration Factor is converted to a whole body	
3849		-)		ncentration Factor for a fish or shellfish species by multiplying the	
3850				portion Bioconcentration Factor by the ratio of the percent lipid in	
3851				bole body to the percent lipid in the edible portion of the same	
3852			species		
3853			1		
3854		2)	A Bio	concentration Factor calculated as described in 35 Ill. Adm. Code	
3855		/		3(c) is converted to a whole body Bioconcentration Factor by	
3856				lying the calculated Bioconcentration Factor by the ratio of the	
3857			-	t lipid in the whole body to 7.6.	
3858			-		
3859	b)	When	calculat	ting either a human threshold criterion or a human nonthreshold	
3860	,	criterio	on as de	scribed in 35 Ill. Adm. Code 302.642 through 302.648 and 35 Ill.	
3861		Adm.	Code 30	02.651 through 302.657, respectively, the geometric mean of all	
3862		availal	ole edib	le portion Bioconcentration Factors for fish and shellfish species	
3863		consu	ned by I	humans is used. Additional considerations in deriving a	
3864		Biocon	ncentrat	ion Factor include:	
3865					
3866		1)	Edible	portions include:	
3867					
3868			A)	Decapods – muscle tissue.	
3869					
3870			B)	Bivalve molluscs – total living tissue.	
3871					
3872			C)	Scaled fishes – boneless, scaleless filets including skin except for	
3873				bloater chubs in which the edible portion is the whole body	
3874				excluding head, scales and viscera.	
3875			D)		
3876			D)	Smooth-skinned fishes – boneless, skinless filets.	
3877		2)	A 1		
3878		2)	A who	le body Bioconcentration Factor is converted to an edible portion	

	1 st Notice	<u>e</u>	JCAR350302-2207052r01
3879			Bioconcentration Factor by multiplying the whole body Bioconcentration
3880			Factor of a species by the ratio of the percent lipid in the edible portion to
3881			the percent lipid in the whole body of the same species.
3882			
3883		3)	A Bioconcentration Factor calculated as described in 35 Ill. Adm. Code
3884		,	302.663 is converted to an edible portion Bioconcentration Factor by
3885			multiplying the calculated Bioconcentration Factor by the ratio of the
3886			percent lipid in the edible portion to 7.6.
3887			
3888	(Sourc	e: Am	ended at 46 Ill. Reg, effective)
3889			
3890	Section 302.6	69 Lis	ting of Derived Criteria
3891			
3892	a)		gency must develop and maintain a listing of toxicity criteria pursuant to
3893			ubpart. This list must be made available to the public and updated whenever
3894			criterion is derived and must be published when updated in the Illinois
3895		Regist	ter.
3896			
3897	b)		erion published pursuant to subsection (a) may be proposed to the Board for
3898		adopti	on as a numeric water quality standard.
3899			
3900	c)		gency must maintain for inspection all information including assumptions,
3901			ty data and calculations used to derive any toxicity criterion listed pursuant
3902		to sub	section (a) until adopted by the Board as a water quality standard.
3903	(-		
3904	(Sourc	e: Am	ended at 46 Ill. Reg, effective)
3905			

JCAR350302-2207052r01

3906 Section 302.APPENDIX A References to Previous Rules (Repealed)

JCAR350302-2207052r01

 3908

 3909
 (Source: Repealed at 46 III. Reg. ____, effective _____)

 3910

3911 Section 302.APPENDIX B Sources of Codified Sections (Repealed)

JCAR350302-2207052r01

 3913

 3914

 (Source: Repealed at 46 Ill. Reg. _____, effective _____)

ILLINOIS REGISTER 1st Notice_

_JCAR350302-2207052r01

POLLUTION CONTROL BOARD

0	TITLE 35: ENVIRONMENTAL PROTECTION
1	SUBTITLE C: WATER POLLUTION
2	CHAPTER I: POLLUTION CONTROL BOARD
3	
4	PART 302
5	WATER QUALITY STANDARDS
6	
7	SUBPART A: GENERAL WATER QUALITY PROVISIONS
8	
9Section	
10302.100	Definitions
11302.101	Scope and Applicability
12302.102	Allowed Mixing, Mixing Zones and ZIDs
13302.103	Stream Flows
14302.104	Main River Temperatures
15302.105	Antidegradation
16	
17	SUBPART B: GENERAL USE WATER QUALITY STANDARDS
18	
19Section	
20302.201	Scope and Applicability
21302.202	Purpose
22302.203	Offensive Conditions
23302.204	pH
24302.205	Phosphorus
25302.206	Dissolved Oxygen
26302.207	Radioactivity
27302.208	Numeric Standards for Chemical Constituents
28302.209	Fecal Coliform
29302.210	Other Toxic Substances
30302.211	Temperature
31302.212	Total Ammonia Nitrogen
32302.213	Effluent Modified Waters (Ammonia) (Repealed)
33	
34 SUBPAR	RT C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS
35	
36Section	
37302.301	Scope and Applicability

JCAR350302-2207052r01

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

38302.302	Algicide Permits						
39302.303	Finished Water Standards						
40302.304	Chemical Constituents						
41302.305	Other Contaminants						
42 302.306 -302	42 302.306 -302.306 Fecal Coliform						
43302.307	Radium 226 and 228						
44							
45	SUBPART D: CHICAGO AREA WATERWAY SYSTEM AND						
46	LOWER DES PLAINES RIVER WATER QUALITY AND						
47	INDIGENOUS AQUATIC LIFE STANDARDS						
48							
49Section							
50302.401	Scope and Applicability						
51302.402	Purpose						
52302.403	Unnatural Sludge						
53302.404	pH						
54302.405	Dissolved Oxygen						
55302.406	Fecal Coliform (Repealed)						
56302.407	Chemical Constituents						
57302.408	Temperature						
58302.409	Cyanide for the South Fork of the South Branch of the Chicago River (Bubbly						
59	Creek)						
60302.410	Other Toxic Substances						
61302.412	Total Ammonia Nitrogen						
62							
	BPART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS						
64							
65Section							
66302.501	Scope, Applicability, and Definitions						
67302.502	Dissolved Oxygen						
68302.503	pH						
69302.504	Chemical Constituents						
70302.505	Fecal Coliform						
71302.506	Temperature						
72302.507	Thermal Standards for Existing Sources on January 1, 1971						
73302.508	Thermal Standards for Sources Under Construction But Not In Operation on						
74	January 1, 1971						
75302.509	Other Sources						

ILLINOIS REGISTER 1st Notice_

POLLUTION CONTROL BOARD

76302.510	Incorporations by Reference (Repealed)
77302.515	Offensive Conditions
78302.520	Regulation and Designation of Bioaccumulative Chemicals of Concern (BCCs)
79302.521	Supplemental Antidegradation Provisions for Bioaccumulative Chemicals of
80	Concern (BCCs)
81302.525	Radioactivity
82302.530	Supplemental Mixing Provisions for Bioaccumulative Chemicals of Concern
83	(BCCs)
84302.535	Ammonia Nitrogen
85302.540	Other Toxic Substances
86302.545	Data Requirements
87302.550	Analytical Testing
88302.553	Determining the Lake Michigan Aquatic Toxicity Criteria or Values – General
89	Procedures
90302.555	Determining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion
91	(LMAATC): Independent of Water Chemistry
92302.560	Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity
93	Criterion (LMAATC): Dependent on Water Chemistry
94302.563	Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value
95	(LMAATV)
96302.565	Determining the Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion
97	(LMCATC) or the Lake Michigan Basin Chronic Aquatic Life Toxicity Value
98	(LMCATV)
99302.570	Procedures for Deriving Bioaccumulation Factors for the Lake Michigan Basin
100302.575	Procedures for Deriving Tier I Water Quality Criteria and Values in the Lake
101	Michigan Basin to Protect Wildlife
102302.580	Procedures for Deriving Water Quality Criteria and Values in the Lake Michigan
103	Basin to Protect Human Health – General
104302.585	Procedures for Determining the Lake Michigan Basin Human Health Threshold
105	Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold
106	Value (LMHHTV)
107302.590	Procedures for Determining the Lake Michigan Basin Human Health
108	Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health
109	Nonthreshold Value (LMHHNV)
110302.595	Listing of Bioaccumulative Chemicals of Concern, Derived Criteria and Values
111	
	T F: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA
113	

114Section	
115302.601	Scope and Applicability
116302.603	Definitions
117302.604	Mathematical Abbreviations
118302.606	Data Requirements
119302.612	Determining the Acute Aquatic Toxicity Criterion for an Individual Substance –
120	General Procedures
121302.615	Determining the Acute Aquatic Toxicity Criterion – Toxicity Independent of
122	Water Chemistry
123302.618	Determining the Acute Aquatic Toxicity Criterion – Toxicity Dependent on Water
124	Chemistry
125302.621	Determining the Acute Aquatic Toxicity Criterion – Procedure for Combinations
126	of Substances
127302.627	Determining the Chronic Aquatic Toxicity Criterion for an Individual Substance –
128	General Procedures
129302.630	Determining the Chronic Aquatic Toxicity Criterion – Procedure for
130	Combinations of Substances
131302.633	The Wild and Domestic Animal Protection Criterion
132302.642	The Human Threshold Criterion
133302.645	Determining the Acceptable Daily Intake
134302.648	Determining the Human Threshold Criterion
135302.651	The Human Nonthreshold Criterion
136302.654	Determining the Risk Associated Intake
137302.657	Determining the Human Nonthreshold Criterion
138302.658	Stream Flow for Application of Human Nonthreshold Criterion
139302.660	Bioconcentration Factor
140302.663	Determination of Bioconcentration Factor
141302.666	Utilizing the Bioconcentration Factor
142302.669	Listing of Derived Criteria
143	
144302.APPEND	
145302.APPEND	
146302.APPEND	e
147	combinations of pH and temperature
	ABLE A pH-Dependent Values of the AS (Acute Standard)
	ABLE B Temperature and pH-Dependent Values of the CS (Chronic
150	Standard) for Fish Early Life Stages Absent

NOTICE OF PROPOSED AMENDMENTS

151 302.TABLE C Temperature and pH-Dependent Values of the CS (Chronic Standard) for Fish Early Life Stages Present
 153302.APPENDIX D Section 302.206(d): Stream Segments for Enhanced Dissolved Oxygen Protection

155

156AUTHORITY: Implementing Section 13 and authorized by Sections 11(b) and 27 of the 157Environmental Protection Act [415 ILCS 5/13, 11(b), and 27].

158

159SOURCE: Filed with the Secretary of State January 1, 1978; amended at 2 Ill. Reg. 44, p. 151, 160effective November 2, 1978; amended at 3 Ill. Reg. 20, p. 95, effective May 17, 1979; amended 161at 3 Ill. Reg. 25, p. 190, effective June 21, 1979; codified at 6 Ill. Reg. 7818; amended at 6 Ill. 162Reg. 11161, effective September 7, 1982; amended at 6 Ill. Reg. 13750, effective October 26, 1631982; amended at 8 Ill. Reg. 1629, effective January 18, 1984; peremptory amendments at 10 Ill. 164Reg. 461, effective December 23, 1985; amended at R87-27 at 12 Ill. Reg. 9911, effective May 16527, 1988; amended at R85-29 at 12 Ill. Reg. 12082, effective July 11, 1988; amended in R88-1 at 16613 Ill. Reg. 5998, effective April 18, 1989; amended in R88-21(A) at 14 Ill. Reg. 2899, effective 167February 13, 1990; amended in R88-21(B) at 14 Ill. Reg. 11974, effective July 9, 1990; amended 168in R94-1(A) at 20 Ill. Reg. 7682, effective May 24, 1996; amended in R94-1(B) at 21 Ill. Reg. 169370, effective December 23, 1996; expedited correction at 21 Ill. Reg. 6273, effective December 17023, 1996; amended in R97-25 at 22 Ill. Reg. 1356, effective December 24, 1997; amended in 171R99-8 at 23 Ill. Reg. 11249, effective August 26, 1999; amended in R01-13 at 26 Ill. Reg. 3505, 172effective February 22, 2002; amended in R02-19 at 26 Ill. Reg. 16931, effective November 8, 1732002; amended in R02-11 at 27 Ill. Reg. 166, effective December 20, 2002; amended in R04-21 174at 30 Ill. Reg. 4919, effective March 1, 2006; amended in R04-25 at 32 Ill. Reg. 2254, effective 175January 28, 2008; amended in R07-9 at 32 Ill. Reg. 14978, effective September 8, 2008; 176amended in R11-18 at 36 Ill. Reg. 18871, effective December 12, 2012-; amended in R11-18(B) 177at 37 Ill. Reg. 7493, effective May 16, 2013; amended-at in R08-09(D) at 39 Ill. Reg. 9388, 178effective July 1, 2015; amended in R18-23 at 46 Ill. Reg. , effective

179

180

SUBPART A: GENERAL WATER QUALITY PROVISIONS

181

182Section 302.100 Definitions

183

184Unless otherwise specified, the definitions of the Environmental Protection Act (Act) [415 ILCS 1855] and 35 Ill. Adm. Code 301 apply to this Part. As used in this Part, each of the following 186definitions has the specified meaning.

187 188

"Acute Toxicity" means the capacity of any substance or combination of

198

205

210 211

212

213 214

215 216

217

218

219

220

221 222

223

224

225

POLLUTION CONTROL BOARD

- 189 substances to cause mortality or other adverse effects in an organism resulting
 190 from a single or short-term exposure to the substance.
 191
- 192 "Adverse Effect" means any gross or overt effect on an organism, including but
 193 not limited to reversible histopathological damage, severe convulsions,
 194 irreversible functional impairment and lethality, as well as any non-overt effect on
 195 an organism resulting in functional impairment or pathological lesions which may
 196 affect the performance of the whole organism, or which reduces an organism's
 197 ability to respond to an additional challenge.
- 199"Chronic Toxicity" means the capacity of any substance or combination of200substances to cause injurious or debilitating effects in an organism which result201from exposure for a time period representing a substantial portion of the natural202life cycle of that organism, including but not limited to the growth phase, the203reproductive phases or such critical portions of the natural life cycle of that204organism.
- "Criterion" means the numerical concentration of one or more toxic substances
 derived in <u>complianceaccordancecompliance</u> with the procedures in Subpart F-of
 this Part which, if not exceeded, would assure compliance with the narrative
 toxicity standard of 35 Ill. Adm. <u>CodeSectionCode</u> 302.210-of this Part.
 - "Early Life Stages" of fish means the pre-hatch embryonic period, the post-hatch free embryo or yolk-sac fry, and the larval period, during which the organism feeds. Juvenile fish, which are anatomically similar to adults, are not considered an early life stage.
 - "Hardness" means a water quality parameter or characteristic consisting of the sum of calcium and magnesium concentrations expressed in terms of equivalent milligrams per liter as calcium carbonate. Hardness is measured in <u>complianceaccordancecompliance</u> with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106.
 - "Mixing Zone" means a portion of the waters of the State identified as a region within which mixing is allowed under 35 Ill. Adm. <u>Codepursuant to SectionCode</u> 302.102(d) of this Part.

NOTICE OF PROPOSED AMENDMENTS

226 "Thermocline" means the plane of maximum rate of decrease of temperature with respect to depth in a thermally stratified body of water. 227 228 229 "Total Residual Chlorine" or "TRC" means those substances which include 230 combined and uncombined forms of both chlorine and bromine and which are 231 expressed, by convention, as an equivalent concentration of molecular chlorine. 232 TRC is measured in complainceaccordance compliance with methods specified in 233 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106. 234 235 "Toxic Substance" means a chemical substance that causes adverse effects in 236 humans, or in aquatic or terrestrial animal or plant life. Toxic substances include, 237 but are not limited to, those substances listed in 40 CFR 302.4, incorporated by reference in 35 Ill. Adm. Code 301.106, or any "chemical substance" as defined 238 239 by the Illinois Chemical Safety Act [430 ILCS 45] 240 241 "ZID" or "Zone of Initial Dilution" means a portion of a mixing zone, identified 242 pursuant to 35 Ill. Adm. CodeSectionCode 302.102(e) of this Part, within which 243 acute toxicity standards need not be met. 244 (Source: Amended at 46 Ill. Reg. _____, effective _____) 245 246 247Section 302.101 Scope and Applicability 248 249 a) This Part contains schedules of water quality standards which applyare 250 applicable apply throughout the State as designated in 35 Ill. Adm. Code 303. Site 251 specific water quality standards are found with the water use designations in 35 252 Ill. Adm. Code 303. 253 254 Subpart B contains general use water quality standards which must be met in **b**) 255 waters of the State for which there is no specific use designation (35 Ill. Adm. Code 303.201). 256 257 258 Subpart C contains the public and food processing water supply standards. These c) 259 are cumulative with Subpart B and must be met by all designated waters at the point at which water is drawn for treatment and distribution as a potable supply or 260 261 for food processing (35 Ill. Adm. Code 303.202). 262 Subpart D contains the Chicago Area Water Water way System and the Lower Des 263 d)

	264 265 266 267 268 269		Plaines River water quality standards. These standards must be met only by certain waters designated in 35 Ill. Adm. Code 303.204, 303.220, 303.225, 303.227, 303.230, 303.235, 303.240 and 303.449. Subpart D also contains water quality standards applicable to indigenous aquatic life waters found only in the South Fork of the South Branch of the Chicago River (Bubbly Creek).
	209 270 271 272 273	e)	Subpart E contains the Lake Michigan Basin water quality standards. These must be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm. Code 303.443.
	274 275 276	f)	Subpart F contains the procedures for determining each of the criteria designated in 35 Ill. Adm. <u>CodeSectionsCode</u> 302.210 and 302.410.
	270 277 278 279 280	g)	-Unless the contrary is clearly indicated, all references to "Parts" or "Sections" are to III. Adm. Code, Title 35: Environmental Protection. For example, "Part 309" is 35 III. Adm. Code 309, and "Section 309.101" is 35 III. Adm. Code 309.101.
	281 282 283 Sectio		 e: Amended at 46 Ill. Reg, effective) 02 Allowed Mixing, Mixing Zones and ZIDs
	284 285 286 287 288 289 290 291	a)	Whenever a water quality standard is more restrictive than its corresponding effluent standard, or where there is no corresponding effluent standard specified at 35 Ill. Adm. Code 304, an opportunity will <u>shall</u> be allowed for compliance with 35 Ill. Adm. Code 304.105 by mixture of an effluent with its receiving waters, provided the discharger has made every effort to comply with the requirements of 35 Ill. Adm. Code 304.102.
	291 292 293 294 295 296 297 298 299 300 301	b)	 The portion, volume and area of any receiving waters within which mixing is allowed pursuant to subsection (a) must<u>shall</u> be limited by the following: Mixing must be confined in an area or volume of the receiving water no larger than the area or volume which would result after incorporation of outfall design measures to attain optimal mixing efficiency of effluent and receiving waters. These measures may include the, but are not limited to, use of diffusers and engineered location and configuration of discharge points.

302 303 304 305	2)	Mixing is not allowed in waters which include a tributary stream entrance if the mixing occludes the tributary mouth or otherwise restricts the movement of aquatic life into or out of the tributary.
306 307 308	3)	Mixing is not allowed in water adjacent to bathing beaches, bank fishing areas, boat ramps or dockages or any other public access area.
309 310 311 312 313 314	4)	Mixing is not allowed in waters containing mussel beds, endangered species habitat, fish spawning areas, areas of important aquatic life habitat, or any other natural features vital to the well being of aquatic life in such a manner that maintaining the maintenance of maintaining aquatic life in the body of water as a whole would be adversely affected.
315 316 317 318	5)	Mixing is not allowed in waters that contain intake structures of public or food processing water supplies, points of withdrawal of water for irrigation, or watering areas accessed by wild or domestic animals.
319 320 321 322 323	6)	Mixing must allow for a zone of passage for aquatic life in which water quality standards are met. However, a zone of passage is not required in receiving streams that have zero flow for at least seven consecutive days recurring on average in nine years out of 10.
324 325 326 327 328	7)	The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing, must not intersect any area of any body of water in such a manner that the maintenance of aquatic life in the body of water as a whole would be adversely affected.
329 330 331 332 333 334 335 336 337 338	8)	The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing, must not contain more than 25% of the cross-sectional area or volume of flow of a stream except for those streams for which the dilution ratio is less than 3:1. In streams where the dilution ratio is less than 3:1, the volume in which mixing occurs, alone or in combination with other volumes of mixing, must not contain more than 50 % of the volume flow unless an applicant for an NPDES permit demonstrates, pursuant to subsection (d), that an adequate zone of passage is provided for pursuant to subsection (b)(6).
339	9)	No mixing is allowed when the water quality standard for the constituent

340			in question is already violated in the receiving water.
341		10)	
342		10)	No body of water may be used totally for mixing of single outfall or
343 344			combination of outfalls, except as provided in subsection (b)(6).
344 345		11)	Single courses of affluents that have more than one outfall must shall must
343 346		11)	Single sources of effluents that have more than one outfall <u>mustshallmust</u> be limited to a total area and volume of mixing no larger than that
340 347			allowable if a single outfall were used.
348			anowable if a single buttait were used.
349		12)	The area and volume in which mixing occurs must be as small as is
350		12)	practicable under the limitations prescribed in this subsection (b), and in
351			no circumstances may the mixing encompass a surface area larger than 26
352			acres.
353			
354	c)	All w	vater quality standards of this Part must be met at every point outside of the
355)		and volume of the receiving water within which mixing is allowed. The
356			toxicity standards of this Part must be met within the area and volume
357			n which mixing is allowed, except as provided in subsection (e).
358			
359	d)	Pursu	ant to the procedures of Section 39 of the Act and 35 Ill. Adm. Code 309, a
360		perso	on may apply to the Agency to include as a condition in an NPDES permit
361		forma	al definition of the area and volume of the waters of the State within which
362		mixir	ng is allowed for the NPDES discharge in question. The defined area and
363		volur	ne of allowed mixing shall constitute a "mixing zone" for the purposes of 35
364			dm. Code: Subtitle C. Upon proof by the applicant that a proposed mixing
365			conforms with the requirements of Section 39 of the Act, this sectionSection
366			ny additional limitations as may be imposed by the Clean Water Act (CWA)
367			JSCU.S.C. 1251 et seq.), the Act or Board regulations, the Agency mustshall,
368			rpursuant tomust, under Section 39(b) of the Act, include within the NPDES
369		perm	it a condition defining the mixing zone.
370			
371	e)		<u>rPursuant to</u> <u>Under</u> the procedures of Section 39 of the Act and 35 Ill. Adm.
372			309, a person may apply to the Agency to include as a condition in an
373			ES permit a ZID as a component portion of a mixing zone. The ZID must
374			, at a minimum, be limited to waters within which effluent dispersion is
375			ediate and rapid. For the purposes of this subsection, "immediate" dispersion
376			is an effluent's merging with receiving waters without delay in time after its
377		aisch	arge and within close proximity of the end of the discharge pipe, so as to

. . .

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

378		minimize the length of exposure time of aquatic life to undiluted effluent, and
379		"rapid" dispersion means an effluent's merging with receiving waters so as to
380		minimize the length of exposure time of aquatic life to undiluted effluent. Upon
381		proof by the applicant that a proposed ZID conforms with the requirements of
382		Section 39 of the Act and this Section, the Agency must <u>undershall, pursuant</u>
383		tounder Section 39(b) of the Act, include within the NPDES permit a condition
384		defining the ZID.
385		
386	f)	Under-Pursuant to Section 39 of the Act and 35 Ill. Adm. Code 309.103, an
387		applicant for an NPDES permit must shall submit data to allow the Agency to
388		determine that the nature of any mixing zone or mixing zone in combination with
389		a ZID conforms with the requirements of Section 39 of the Act and of this
390		Section. A permittee may appeal Agency determinations concerning a mixing
391		zone or ZID underpursuant tounder the procedures of Section 40 of the Act and
392		35 Ill. Adm. Code 309.181.
393		
394	g)	When a mixing zone is defined in an NPDES permit, the waters within that
395		mixing zone, for the duration of that NPDES permit, constitutes-shall constitute
396		the sole waters within which mixing is allowed for the permitted discharge. It
397		willshallwill not be a defense in any action brought pursuant to 35 Ill. Adm. Code
398		304.105 that the area and volume of waters within which mixing may be allowed
399		pursuant to subsection (b) is less restrictive than the area or volume or waters
400		encompassed in the mixing zone.
401		
402	h)	When a mixing zone is explicitly denied in a NPDES permit, no waters may be
403		used for mixing by the discharge to which the NPDES permit applies, all other
404		provisions of this Section notwithstanding.
405		
406	i)	Where an NPDES permit is silent on the matter of a mixing zone, or when no
407		NPDES permit is in effect, the burden of proof <u>willshallwill</u> be on the discharger
408		to demonstrate compliance with this Section in any action brought pursuant to 35
409		Ill. Adm. Code 304.105.
410		
411	(Soi	arce: Amended at 46 Ill. Reg, effective)
412		
413Sect	tion 302	.103 Stream Flows
414		

415Except as otherwise provided in this Chapter, the water quality standards in this Part-shall apply

NOTICE OF PROPOSED AMENDMENTS

416at all times except during periods when flows are less than the average minimum seven day low 417flow which occurs once in ten years.

418

419 (Source: Amended at 46 Ill. Reg. ____, effective _____)

420

421Section 302.105 Antidegradation

422

423This<u>The purpose of this</u> Section protects is to protect existing uses of all waters of the State of 424Illinois, maintains maintain the quality of waters with quality that is better than water quality 425standards, and prevent unnecessary deterioration of waters of the State.

426

426		
427	a)	Existing Uses
428	,	Uses actually attained in a surface water body or water body segment on or after
429		November 28, 1975, whether or not they are included in the water quality
430		standards, must be maintained and protected. Examples of degradation of
431		existing uses of the waters of the State include:
432		
433		1) an action that would result in the deterioration of the existing aquatic
434		community, such as a shift from a community of predominantly
435		pollutant-sensitive species to pollutant-tolerant species or a loss of species
436		diversity;
437		
438		2) an action that would result in a loss of a resident or indigenous species
439		whose presence is necessary to sustain commercial or recreational
440		activities; or
441		
442		3) an action that would preclude continued use of a surface water body or
443		water body segment for a public water supply or for recreational or
444		commercial fishing, swimming, paddling or boating.
445		
446	b)	Outstanding Resource Waters
447		
448		1) Waters that are designated as Outstanding Resource Waters (ORWs)
449		pursuant to 35 Ill. Adm. Code 303.205 and listed in 35 Ill. Adm. Code
450		303.206 must not be lowered in quality except as provided below:
451		
452		A) Activities that result in short-term, temporary (i.e., weeks or
453		months) lowering of water quality in an ORW; or

454			
455			B) Existing site stormwater discharges that comply with applicable
456			federal and State stormwater management regulations and do not
457			result in a violation of any water quality standards.
458			result in a violation of any water quanty standards.
459		2)	Any activity in subsection $(b)(1)(A)$ or $(b)(1)(B)$ that requires a National
460		2)	Pollutant Discharge Elimination System (NPDES) permit or a Clean
461			Water Act (CWA) Section 401 certification must also comply with
462			subsection (c)(2).
463			Subsection (c)(2).
464		3)	Any activity listed in subsection (b)(1) or any other proposed increase in
465		3)	pollutant loading to an ORW must also meet the following requirements:
466			pondiant loading to an OKW must also meet the following requirements.
467			A) All existing uses of the water will be fully protected; and
468			<i>Ty The existing uses of the water will be fully protected, and</i>
469			B) Except for activities falling under one of the exceptions provided
470			in subsection (b)(1)(A) or (B) above:
471			
472			i) The proposed increase in pollutant loading is necessary for
473			an activity that will improve water quality in the ORW; and
474			an activity that will improve water quality in the orter, and
475			ii) The improvement could not be practicably achieved
476			without the proposed increase in pollutant loading.
477			
478		4)	Any proposed increase in pollutant loading requiring an NPDES permit or
479		-)	a CWA 401 certification for an ORW must be assessed pursuant to
480			subsection (f) to determine compliance with this Section.
481			
482	c)	High	Quality Waters
483	,	υ	
484		1)	Except as otherwise provided in subsection (d)-of this Section, waters of
485		,	the State whose existing quality is better than any of the established
486			standards of this Part must be maintained in their present high quality,
487			unless the lowering of water quality is necessary to accommodate
488			important economic or social development.
489			• • • •
490		2)	The Agency must assess any proposed increase in pollutant loading that
491			necessitates a new, renewed or modified NPDES permit or any activity

492		requiring a CWA Section 401 certification to determine compliance with				
493		this Section. The assessment to determine compliance with this Section				
494		must be made on a case-by-case basis. In making this assessment, the				
495		Agen	Agency must:			
496		C				
497		A)	Consi	der the fate and effect of any parameters proposed for an		
498		,		used pollutant loading.		
499				1 0		
500		B)	Assur	e the following:		
501		,		5		
502			i)	The applicable numeric or narrative water quality standard		
503			,	will not be exceeded as a result of the proposed activity;		
504				1 1 57		
505			ii)	All existing uses will be fully protected;		
506)			
507			iii)	All technically and economically reasonable measures to		
508)	avoid or minimize the extent of the proposed increase in		
509				pollutant loading have been incorporated into the proposed		
510				activity; and		
510				uon (ny), uno		
512			iv)	The activity that results in an increased pollutant loading		
512			10)	will benefit the community at large.		
515				whi benefit the community at large.		
515		C)	Heell	tilizeUse the following information sources, when available:		
515		0)	0300			
517			i)	Information, data or reports available to the Agency from		
517			1)	its own sources;		
519				its own sources,		
520			ii)	Information, data or reports supplied by the applicant;		
520 521			11)	information, data of reports supplied by the applicant,		
521			iii)	Agency experience with factually similar permitting		
522 523			111)	scenarios; and		
523 524				scenarios, and		
524 525			iv)	Any other valid information available to the Agency.		
			10)	Any other valid information available to the Agency.		
526 527	4)	A ativitian Na	t Subia	at to a Further Antidegradation Assessment		
527 528	d)			ct to a Further Antidegradation Assessment		
528 520			-	ties will not be subject to a further antidegradation		
529		assessment underpursuant tounder subsection (c) of this Section.				

530		
531	1)	Short-term, temporary (i.e., weeks or months) lowering of water quality;
532		
533	2)	Bypasses that are not prohibited at 40 CFR 122.41(m), incorporated by
534		reference at 35 Ill. Adm. Code 301.106;
535		
536	3)	Response actions underpursuant tounder the Comprehensive
537		Environmental Response, Compensation and Liability Act (CERCLA), as
538		amended, corrective actions, underpursuant tounder the Resource
539		Conservation and Recovery Act (RCRA), as amended, or similar federal
540		or State authority, taken to alleviate a release into the environment of
541		hazardous substances, pollutants or contaminants which may pose a
542		danger to public health or welfare;
543		
544	4)	Thermal discharges that have been approved through a CWA Section
545		316(a) demonstration;
546		
547	5)	New or increased discharges of a non-contact cooling water:
548		
549		A) without additives, except as provided in subsection $(d)(5)(B)$,
550		returned to the same body of water from which it was taken, as
551		defined by 35 Ill. Adm. Code 352.104, provided that the discharge
552		complies with applicable Illinois thermal standards; or
553		
554		B) containing chlorine when the non-contact cooling water is treated
555		to remove residual chlorine, and returned to the same body of
556		water from which it was taken, as defined in 35 Ill. Adm. Code
557		352.104, provided that the discharge complies with applicable
558		Illinois thermal and effluent standards at 35 Ill. Adm. Code 302,
559		303, and 304;
560		
561	6)	Discharges permitted under a current general NPDES permit as provided
562		by 415 ILCS 5/39(b) or a nationwide or regional CWA Section 404 permit
563		are not subject to facility-specific antidegradation review; however, the
564		Agency must assure that individual permits or certifications are required
565		prior to all new pollutant loadings or hydrological modifications that
566		necessitate a new, renewed or modified NPDES permit or CWA Section
567		401 certification that affects waters of particular biological significance,

568		which	h may include streams identified by the Illinois Department of
569		Natur	ral Resources as "biologically significant". Waters of particular
570		biolo	gical significance may include streams listed in a 1991 publication by
571		the II	linois Department of Conservation entitled "Biologically Significant
572		Illino	is Streams", or
573			-
574		7) Chan	ging or <u>includingChanges to or inclusion of including</u> a new permit
575		limita	ation that does not result in an actual increase of a pollutant loading,
576		such	as those stemming from improved monitoring data, new analytical
577		testin	g methods, new or revised technology or water quality based effluent
578		limits	5.
579			
580	e)	Lake Michig	an Basin
581		Waters in the	e Lake Michigan basin as identified in 35 Ill. Adm. Code 303.443 are
582		also subject t	to the requirements applicable to bioaccumulative chemicals of
583		concern foun	d at 35 Ill. Adm. <u>CodeSectionCode</u> 302.521 of this Part.
584			
585	f)	Antidegradat	tion Assessments
586		In conducting	g an antidegradation assessment <u>underpursuant tounder</u> this Section,
587		the Agency n	nust comply with the following procedures.
588			
589		1) A per	mit application for any proposed increase in pollutant loading that
590		neces	sitates the issuance of a new, renewed, or modified NPDES permit or
591		a CW	A Section 401 certification must include, to the extent necessary for
592		the A	gency to determine that the permit application meets the
593		requi	rements of this Section, the following information:
594			
595		A)	Identification and characterization of the water body affected by
596			the proposed load increase or proposed activity and the existing
597			water body ² 's uses. Characterization must address physical,
598			biological and chemical conditions of the water body.
599			
600		B)	Identification and quantification of the proposed load increases for
601			the applicable parameters and of the potential impacts of the
602			proposed activity on the affected waters.
603			
604		C)	The purpose and anticipated benefits of the proposed activity.
605			Such benefits may include:

606				
607			i)	Providing a centralized wastewater collection and treatment
608			/	system for a previously unsewered community;
609				5 1 5 57
610			ii)	ExpandingExpansionExpanding to provide service for
611)	anticipated residential or industrial growth consistent with
612				a community ² 's long range urban planning;
613				
614			iii)	AddingAddition ofAdding a new product line or production
615			,	increase or modification at an industrial facility; or
616				moreuse of mournearion at an maastriar facinity, of
617			iv)	Increasing or retainingAn increase or the retention
618			10)	ofretaining current employment levels at a facility.
619				on <u>reaming</u> current employment levels at a facility.
620		D)	Λαρο	ssments of alternatives to proposed increases in pollutant
621		D)		ng or activities subject to Agency certification underpursuant
622				ler Section 401 of the CWA that result in less of a load
623				ase, no load increase or minimal environmental degradation.
623 624				alternatives may include:
625			Such	and many menude.
626			i)	Additional treatment levels including no discharge
620 627			i)	Additional treatment levels, including no discharge alternatives;
627 628				anematives,
			::)	Dischance of waste to alternate leasting including
629 (20)			ii)	Discharge of waste to alternate locations, including
630				publicly-owned treatment works and streams with greater
631				assimilative capacity; or
632			,	
633			iii)	Manufacturing practices that incorporate pollution
634				prevention techniques.
635		T)		
636		E)	Any a	additional information the Agency may request.
637				
638		F)		that a copy of the application has been provided to the
639			Illino	is Department of Natural Resources.
640				
641	2)	The Agency must complete an antidegradation assessment in		
642		<u>complianceaccordancecompliance</u> with the provisions of this Section on a		
643		case-by-case basis.		

ILLINOIS REGISTER 1 Motice

POLLUTION CONTROL BOARD

644				
645				
646		A)	The A	gency must consider the criteria stated in 35 Ill. Adm.
647			CodeS	SectionCode 302.105(c)(2).
648				
649		B)	The A	gency must consider the information provided by the
650			applic	ant underpursuant tounder subsection (f)(1).
651				
652		C)	After	its assessment, the Agency must produce a written analysis
653		ŕ	addres	sing the requirements of this Section and provide a decision
654				ng one of the following results:
655			•	
656			i)	If the proposed activity meets the requirements of this
657			,	Section, then the Agency must proceed with public notice
658				of the NPDES permit or CWA Section 401 certification
659				and include the written analysis as a part of the fact sheet
660				accompanying the public notice;
661				
662			ii)	If the proposed activity does not meet the requirements of
663			,	this Section, then the Agency must provide a written
664				analysis to the applicant and must be available to discuss
665				the deficiencies that led to the disapproval. The Agency
666				may suggest methods to remedy the conflicts with the
667				requirements of this Section;
668				
669			iii)	If the proposed activity does not meet the requirements of
670			,	this Section, but some lowering of water quality is
671				allowable, then the Agency will contact the applicant with
672				the results of the review. If the reduced loading increase is
673				acceptable to the applicant, upon the receipt of an amended
674				application, the Agency will proceed to public notice; or if
675				the reduced loading increase is not acceptable to the
676				applicant, the Agency will transmit its written review to the
677				applicant in the context of an NPDES permit denial or a
678				CWA Section 401 certification denial.
679				
680	3)	The A	gency v	vill conduct public notice and public participation through
681				ice procedures found in 35 Ill. Adm. Code 309.109 or CWA

682 Se	ection 401 certifications. The Agency must incorporate the following
683 in	formation into a fact sheet accompanying the public notice:
684	
685 A) A description of the activity, including identification of water
686	quality parameters for which there will be an increased pollutant
687	loading;
688	
689 B)) Identification of the affected surface water body or water body
690	segment, any downstream surface water body or water body
691	segment also expected to experience a lowering of water quality,
692	characterization of the designated and current uses of the affected
693	surface water body or water body segment and identification of
694	which uses are most sensitive to the proposed load increase;
695	
696 C) A summary of any review comments and recommendations
697	provided by Illinois Department of Natural Resources, local or
698	regional planning commissions, zoning boards and any other
699	entities the Agency consults regarding the proposal;
700	
701 D) An overview of alternatives considered by the applicant and
702	identification of any provisions or alternatives imposed to lessen
703	the load increase associated with the proposed activity; and
704	
705 E) The name and telephone number of a contact person at the Agency
706	who can provide additional information.
707	
708 (Source: Amend	led at 46 Ill. Reg, effective)
709	
710 SUBPAR	T B: GENERAL USE WATER QUALITY STANDARDS
711	
712Section 302.201 Scope	and Applicability
713	
714Subpart B contains gene	ral use water quality standards which must be met in waters of the State
715 for which there is no spe	cific designation (35 Ill. Adm. CodeSectionCode 303.201).
716	
	led at 46 Ill. Reg, effective)
718	
719Section 302.202 Purpo	se

NOTICE OF PROPOSED AMENDMENTS

720

721The General Use standards will protect the State's water for aquatic life (except as provided in 722Section 302.213), wildlife, agricultural use, secondary contact use and most industrial uses and 723 ensure the aesthetic quality of the State's aquatic environment. Primary contact uses are 724protected for all General Use waters whose physical configuration permits such use. 725 (Source: Amended at 46 Ill. Reg. , effective _____) 726 727 728Section 302.203 Offensive Conditions 729 730Waters of the State must shall be free from sludge or bottom deposits, floating debris, visible oil, 731odor, plant or algal growth, color or turbidity of other than natural origin. The allowed mixing 732provisions of 35 Ill. Adm. CodeSectionCode 302.102 must shall-not be used to comply with the 733 provisions of this Section. 734 (Source: Amended at 46 Ill. Reg. _, effective __) 735 736 737Section 302.204 pH 738 739pH(STORET number 00400) must shall be within the range of 6.5 to 9.0 except for natural 740causes. 741 742 (Source: Amended at 46 Ill. Reg., effective) 743 744Section 302.205 Phosphorus 745 746Phosphorus (STORET number 00665): After December 31, 1983, Phosphorus as P must shall 747not exceed 0.05 milligram per liter (mg/LL) in any reservoir or lake with a surface area of 8.1 748hectares (20 acres) or more, or in any stream at the point where it enters any such reservoir or 749lake. For the purposes of this Section, the term "reservoir or lake" does shall not include low 750 level pools constructed in free flowing streams or any body of water which is an integral part of 751an operation which includes the application of sludge on land. Point source discharges which 752comply with 35 Ill. Adm. CodeSectionCode 304.123 must shall be in compliance with this 753Section for purposes of application of 35 Ill. Adm. CodeSectionCode 304.105. 754 (Source: Amended at 46 Ill. Reg. _ _ , effective _ _) 755 756 757Section 302.206 Dissolved Oxygen

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

758 759General use waters must maintain dissolved oxygen concentrations at or above the values 760contained in subsections (a), (b) and (c) of this Section. 761 762 a) General use waters at all locations must maintain sufficient dissolved oxygen 763 concentrations to prevent offensive conditions as required in 35 Ill. Adm. 764 CodeSectionCode 302.203 of this Part. Quiescent and isolated sectors of General Use waters including but not limited to wetlands, sloughs, backwaters and waters 765 below the thermocline in lakes and reservoirs must be maintained at sufficient 766 dissolved oxygen concentrations to support their natural ecological functions and 767 768 resident aquatic communities. 769 770 b) Except in those waters identified in Appendix D-of this Part, the dissolved oxygen 771 concentration in the main body of all streams, in the water above the thermocline 772 of thermally stratified lakes and reservoirs, and in the entire water column of 773 unstratified lakes and reservoirs must not be less than the following: 774 775 During the period of March through July, 1) 776 777 A) 5.0 mg/L at any time; and 778 779 6.0 mg/L as a daily mean averaged over 7 days. B) 780 During the period of August through February, 781 2) 782 783 A) 3.5 mg/L at any time; 784 785 B) 4.0 mg/L as a daily minimum averaged over 7 days; and 786 787 C) 5.5 mg/L as a daily mean averaged over 30 days. 788 789 The dissolved oxygen concentration in all sectors within the main body of all c) 790 streams identified in Appendix D-of this Part must not be less than: 791 792 1) During the period of March through July, 793 794 A) 5.0 mg/L at any time; and 795

796 707			B)	6.25 mg/L as a daily mean averaged over 7 days.
797 798		2)	Duri	ng the period of August through February,
799		2)	Duin	ig the period of August through reordary,
800			A)	4.0 mg/L at any time;
801)	
802			B)	4.5 mg/L as a daily minimum averaged over 7 days; and
803				
804			C)	6.0 mg/L as a daily mean averaged over 30 days.
805				
806	d)	Asse	ssing at	tainment of dissolved oxygen mean and minimum values.
807				
808		1)	-	mean is the arithmetic mean of dissolved oxygen concentrations in
809			24 cc	onsecutive hours.
810				
811		2)	•	minimum is the minimum dissolved oxygen concentration in 24
812			conse	ecutive hours.
813		2		
814		3)		neasurements of dissolved oxygen used to determine attainment or
815				of attainment with any of the dissolved oxygen standards in this
816				on must assure daily minima and daily means that represent the true
817			dany	minima and daily means.
818 819		4)	The	lissolved everyon concentrations used to determine a daily mean or
819		4)		lissolved oxygen concentrations used to determine a daily mean or minimum should not exceed the air-equilibrated concentration.
820 821			ually	minimum should not exceed the an-equinorated concentration.
822		5)	" <mark>"</mark> Da	ily minimum averaged over 7 days"" means the arithmetic mean of
823		5)		minimum dissolved oxygen concentrations in 7 consecutive 24-hour
824			perio	
825			P	
826		6)	" <mark>"</mark> Da	ily mean averaged over 7 days" ²² means the arithmetic mean of daily
827		,		dissolved oxygen concentrations in 7 consecutive 24-hour periods.
828				
829		7)	" <mark></mark> Da	ily mean averaged over 30 days" ²² means the arithmetic mean of daily
830			mear	dissolved oxygen concentrations in 30 consecutive 24-hour periods.
831				
832	(Sou	rce: Ar	nended	at 46 Ill. Reg, effective)
833				

ILLINOIS REGISTER 1ª Notice

POLLUTION CONTROL BOARD

	834Section 302.207 Radioactivity							
	835 836 837 838	a)	Gross beta-(STORET number 03501) concentration must-shall not exceed 100 picocuries per liter (pCi/L).					
	838 839 840 841	<u>₽) b)</u> S	trontium 90 (STORET number 13501) concentration must not exceed 2 picocuries per liter (pCi/L).					
	842 843 844	c)	The annual average radium 226 and 228-(STORET number 11503) combined concentration must not exceed 3.75 picocuries per liter (pCi/L).					
	845 846	(Sourc	e: Amended at 46 Ill. Reg, effective)					
		n 302.2	08 Numeric Standards for Chemical Constituents					
	849 850 851 852 853	a)	The acute standard (AS) for the chemical constituents listed in subsection (e) must <u>shall</u> not be exceeded at any time except for those waters for which a zone of initial dilution (ZID) has been approved by the Agency <u>underpursuant tounder</u> 35 Ill. Adm. <u>CodeSectionCode</u> 302.102.					
	854 855 856	b)	The chronic standard (CS) for the chemical constituents listed in subsection (e) must <u>shall</u> not be exceeded by the arithmetic average of at least four consecutive samples collected over any period of at least four days, except for those waters in					
	857 858 859 860 861 862		which the Agency has approved a mixing zone or in which mixing is allowed <u>underpursuant tounder</u> 35 Ill. Adm. <u>CodeSectionCode</u> 302.102. The samples used to demonstrate attainment or lack of attainment with a CS must be collected in a manner that assures an average representative of the sampling period. For the chemical constituents that have water quality based standards dependent upon hardness, the chronic water quality standard will be calculated according to					
	863 864 865 866 867 868 869		subsection (e) using the hardness of the water body at the time the sample was collected. To calculate attainment status of chronicstandards, the concentration of the chemical constituent in each sample is divided by the calculated water quality standard for the sample to determine a quotient. The water quality standard is attained if the mean of the sample quotients is less than or equal to one for the duration of the averaging period.					
	870 871	c)	The human health standard (HHS) for the chemical constituents listed in subsection (f) must <u>shall</u> not be exceeded when the stream flow is at or above the					

ILLINOIS REGISTER 1st Notice

883

884

885

POLLUTION CONTROL BOARD

872	harmonic mean flow <u>underpursuant tounder</u> 35 Ill. Adm. <u>CodeSectionCode</u>
873	302.658 nor <u>mustshallmust</u> an annual average, based on at least eight samples,
874	collected in a manner representative of the sampling period, exceed the HHS
875	except for those waters in which the Agency has approved a mixing zone or in
876	which mixing is allowed under 35 Ill. Adm. Codepursuant to SectionCode
877	302.102.
878	

- d) The standard for the chemical constituents of subsections (g) and (h) must<u>shall</u>
 not be exceeded at any time except for those waters in which the Agency has
 approved a mixing zone or in which mixing is allowed under 35 Ill. Adm.
 <u>Codepursuant to SectionCode</u> 302.102.
 - e) Numeric Water Quality Standards for the Protection of Aquatic Organisms

Constituent	AS (µg/L)	CS (µg/L)
Arsenic (trivalent, dissolved)	360 × <u>×</u> <u>×</u> 1.0* = 360	190 × <u>×</u> <u>×</u> 1.0* = 190
Boron (total)	40,100	7,600
Cadmium (dissolved)	$e^{A+B \ln(H)} \times \begin{bmatrix} 1.138672 - \\ [(\ln(H))(0.041838)] \end{bmatrix}$ $e^{A+B \ln(H)} \times \begin{bmatrix} 1.138672 - \\ [(\ln(H))(0.041838)] \end{bmatrix}$ where $A = -2.918$ and $B = 1.128$	$e^{A+B \ln(H)} \times \begin{bmatrix} 1.101672 - \\ [(\ln(H))(0.041838)] \end{bmatrix}$ $e^{A+B \ln(H)} \times \begin{bmatrix} 1.101672 - \\ [(\ln(H))(0.041838)] \end{bmatrix}$ where $A = -3.490$ and $B = 0.7852$
Chromium (hexavalent, total)	16	11
Chromium	$e^{A+B\ln(H)} \times 0.316$ *	$e^{A+B\ln(H)} \times 0.860$ *

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

(trivalent, dissolved)	$e^{A+B\ln(H)} \times 0.316^*$	$e^{A+B\ln(H)} \times 0.860*$	
,	where $A = 3.688$ and $B = 0.8190$	where $A = 1.561$ and $B = 0.8190$	
Copper (dissolved)	$e^{A+B\ln(H)} \times 0.960*$ $e^{A+B\ln(H)} \times 0.960*$	$e^{A+B\ln(H)} \times 0.960*$ $e^{A+B\ln(H)} \times 0.960*$	
	where $A = -1.464$ and $B = 0.9422$	where $A = -1.465$ and $B = 0.8545$	
Cyanide**	22	5.2	
Fluoride (total)	$e^{A+B\ln(H)}e^{A+B\ln(H)}$	$e^{A+B\ln(H)}e^{A+B\ln(H)}$, but <u>mustshallmust</u> not exceed 4.0 mg/L	
	where $A = 6.7319$ and $B = 0.5394$	where $A = 6.0445$ and B = 0.5394 where $A = 6.0445$ and B = 0.5394	
Lead (dissolved)	$e^{A+B \ln (H)} \times \frac{\{1.46203 - (\ln(H))(0.145712)\} *}{\{(\ln(H))(0.145712)\} *}$ $e^{A+B\ln(H)} \times \frac{\{1.46203 - (\ln(H))(0.145712)\}}{\{(\ln(H))(0.145712)\}} *$	$e^{A+B\ln(H)} \times \frac{\{1.46203 - [(\ln(H))(0.145712)]\}^{*}}{[(\ln(H))(0.145712)]\}^{*}}$ $e^{A+B\ln(H)} \times \frac{\{1.46203 - [(\ln(H))(0.145712)]\}^{*}}{[(\ln(H))(0.145712)]}^{*}$	
	where $A = -1.301$ and $B = 1.273$	where $A = -2.863$ and $B = 1.273$	
<u>Manganese</u> (dissolved)	$e^{A+B\ln(H)} \times \frac{0.9812^*}{0.9812^*}$	$e^{A+B\ln(H)} \times \frac{0.9812^*}{0.9812^*}$	

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

Manganese (dissolved)	$e^{A+B\ln(H)} \times \frac{0.9812^*}{0.9812^*}$	$e^{A+B\ln(H)} \times \frac{0.9812^*}{0.9812^*}$			
	where $A = 4.9187$ and	where $A = 4.0635$ and			
	B = 0.7467	B = 0.7467			
Mercury (dissolved)	2.6 × <u>×</u> <u>×</u> 0.85* = 2.2	$1.3 \stackrel{\scriptstyle \leftarrow}{\times} 0.85^* = 1.1$			
Nickel (dissolved)	$e^{A+B\ln(H)} \times 0.998$ * $e^{A+B\ln(H)} \times 0.998$ *	$e^{A+B\ln(H)} \times 0.997$ * $e^{A+B\ln(H)} \times 0.997$ *			
	where $A = 0.5173$ and $B = 0.8460$	where $A = -2.286$ and $B = 0.8460$			
TRC	19	11			
Zinc (dissolved)	$e^{A+B\ln(H)} \times 0.978^{*}$ $e^{A+B\ln(H)} \times 0.978^{*}$	$e^{A+B\ln(H)} \times 0.986^{*}$ $e^{A+B\ln(H)} \times 0.986^{*}$			
	where $A = 0.9035$ and $B = 0.8473$	where $A = -0.4456$ and $B = 0.8473$			
Benzene	4200	860			
Ethylbenzene	150	14			
Toluene	2000	600			
Xylene(s)	920	360			
where: $\mu g/L = microgram per liter$					

886

e^{x}	=	base of natural logarithms raised to the x-power
$\ln(H)$	=	natural logarithm of Hardness (in mg/L as CaCO ₃)
*	=	conversion factor multiplier for dissolved metals

= conversion factor multiplier for dissolved metals

ILLI	NOIS RI	EGISTER 1 st Not	ice		JCAR350302	-2207052r01	
	POLLUTION CONTROL BOARD						
		NOTICE OF PROPOSED AMENDMENTS					
887		 ** = standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3) 					
888	f)	Numeric Water Qu	uality Standard	for the Protect	tion of Human	Health	
889		Constituent		(µg/L)			
		Mercury (total)		0.012			
000		Benzene		310			
890		where: $\mu g/L = m$	nicrograms per	liter			
891 892 893	g)	Single-value standards apply at the following concentrations for these substances:					
075	095	Constituent	Unit		Standard		
		Barium (total)	mg/L		5.0		
		Chloride (total)	mg/L		500		
		Iron (dissolved)	mg/L	01046	1.0		
		Phenols	mg/L		0.1		

		Sele	nium (to	tal)	mg/L		1.0	
		Silver (total)			μg/L		5.0	
894		2111	()		PB-2			
071		where:						
		mg/L = milligram per liter and						
00 <i>5</i>		$\mu g/L = microgram per liter$						
895	1 \	XX 7 (1.	. 1 1		C 11		
896	h)	Water	r quality	standard	ls for sulfate ar	e as follows:		
897		1)	1 +		1			
898 899		1)	•	-			essed for purposes of centrations must not exceed	
899 900							e frequency over a 30 day	
901			period	-	ien measurea a	it a representative	e frequency over a 50 day	
902			period	•				
903		2)	The re	sults of t	he following e	auations provide	e sulfate water quality	
904		_)			0	1 1	hardness (in mg/L as CaCO ₃)
905		and chloride (in mg/L) and must be met at all times:						
906				[×]	C ,			
907			A) If the hardness concentration of receiving waters is greater than or					
908			equal to 100 mg/L but less than or equal to 500 mg/L, and if the					
909		chloride concentration of waters is greater than or equal to 25						
910		mg/L but less than or equal to 500 mg/L , then:						
911								
912		C = [1276.7 + 5.508 (hardness) - 1.457 (chloride)] * 0.65						
913								
914 015				where:				
915 016				<u> </u>	sulfate concen	tuation		
916 917				C –	surfate concen	tration		
917 918			B)	If the h	ardness concer	stration of water	s is greater than or equal to	
918 919			D)) mg/L, and if the chloride	
920							or equal to 5 mg/L but less	
921					mg/L, then:			
922				0	6 ,			
923				C =	[-57.478 + 5.7	79 (hardness) $+$ 5	54.163 (chloride)] * 0.65	
924					-	、		

ILLINOIS REGISTER 1 st Notice	JCA
POLLUTION CONTROL	, BOARD
NOTICE OF PROPOSED AM	IENDMEN

		₩	OTICE OF PROPOSED AMENDMENTS
925			where:
926			
927			C = sulfate concentration
928			
929	3)	The fo	llowing sulfate standards must be met at all times when hardness (in
930	,		as CaCO ₃) and chloride (in mg/L) concentrations other than
931		-	ed in (h)(2) are present:
932		1	
933		A)	If the hardness concentration of waters is less than 100 mg/L or
934		,	chloride concentration of waters is less than 5 mg/L, the sulfate
935			standard is 500 mg/L.
936			C C C C C C C C C C C C C C C C C C C
937		B)	If the hardness concentration of waters is greater than 500 mg/L
938			and the chloride concentration of waters is 5 mg/L or greater, the
939			sulfate standard is 2,000 mg/L.
940			
941		C)	If the combination of hardness and chloride concentrations of
942			existing waters are not reflected in subsection $(h)(3)(A)$ or (B) , the
943			sulfate standard may be determined in a site-specific rulemaking
944			under-pursuant to section 303(c) of the Federal Water Pollution
945			Control Act of 1972 (Clean Water Act), 33 USCU.S.C. 1313, and
946			Federal Regulations at 40 CFR 131.10(j)(2).
947			
948	(Source: An	nended at	t 46 Ill. Reg, effective)
949			
	n 302.209 Fe	ecal Colif	form
951			
952			onths May through October, based on a minimum of five samples
953			t more than a 30 day period, fecal coliform (STORET number
954			hall not exceed a geometric mean of 200 per 100 milliliter (ml), nor
955			t more than 10% of the samples during any 30 day period exceed
956	-		nl in protected waters. Protected waters are defined as waters which,
957			characteristics, aesthetic value or environmental significance are
958			protection from pathogenic organisms. Protected waters will meet
959	one c	or both of	the following conditions:

960 presently support or have the physical characteristics to support primary 961 1) contact; 962

963		
964		2) flow through or adjacent to parks or residential areas.
965		
966	b)	Waters unsuited to support primary contact uses because of physical, hydrologic
967	,	or geographic configuration and are located in areas unlikely to be frequented by
968		the public on a routine basis as determined by the Agency at 35 Ill. Adm. Code
969		309.Subpart A, are exempt from this standard.
970		
971	c)	The Agency must-shall apply this rule as required by pursuant to 35 Ill. Adm.
972	-)	Code 304.121.
973		
974	(Sour	ce: Amended at 46 Ill. Reg, effective)
975	(2001)	, •inorate/
	ion 302.2	210 Other Toxic Substances
977		
	ers of the	State must-shall be free from any substances or combination of substances in
		is toxic or harmful to human health, or to animal, plant or aquatic life. Individual
		stances or parameters for which numeric standards are specified in this Subpart are
		this Section.
982	juojeet to	
983	a)	Any substance or combination of substances must-shall be deemed to be toxic or
984	u)	harmful to aquatic life if present in concentrations that exceed the following:
985		nammar to adjuant me n present m concentrations and cheece are renowing.
986		1) An Acute Aquatic Toxicity Criterion (AATC) validly derived and
987		correctly applied underpursuant tounder procedures set forth in 35 Ill.
988		Adm. <u>CodeSectionsCode</u> 302.612 through 302.618 or in 35 Ill. Adm.
989		CodeSectionCode 302.621; or
990		
991		2) A Chronic Aquatic Toxicity Criterion (CATC) validly derived and
992		correctly applied <u>underpursuant to under</u> procedures set forth in 35 Ill.
993		Adm. <u>CodeSectionsCode</u> 302.627 or 302.630.
994		
995	b)	Any substance or combination of substances must-shall be deemed to be toxic or
996	~)	harmful to wild or domestic animal life if present in concentrations that exceed
997		any Wild and Domestic Animal Protection Criterion (WDAPC) validly derived
998		and correctly applied underpursuant tounder 35 Ill. Adm. <u>CodeSectionCode</u>
999		302.633.
1000		

1005

1006

1007

1008 1009

1010

1011

1012

1013

1014

1021

1032

1035

1036

1037

1038

POLITION CONTROL BOAR	
I OLLO HON CONTROL DOM	

- 1001c)Any substance or combination of substances must<u>shall</u> be deemed to be toxic or1002harmful to human health if present in concentrations that exceed criteria, validly1003derived and correctly applied, based on either of the following:1004
 - Disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs calculated <u>underpursuant tounder</u> 35 Ill. Adm. <u>CodeSectionsCode</u> 302.642 through 302.648 (Human Threshold Criterion); or
 - Disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage calculated under 35 Ill. Adm. <u>Codepursuant to SectionsCode</u> 302.651 through 302.658 (Human Nonthreshold Criterion).
- 1015d)The most stringent criterion of subsections (a), (b), and (c) applies shall1016applyapplies at all points outside of any waters within which, mixing is allowed1017under 35 Ill. Adm-Codepursuant to Section. Code 302.102. In addition, the1018AATC derived underpursuant tounder subsection (a)(1) applies shall apply in all1019waters except that it must shall-not apply within a ZID that is prescribed in1020complianceaccordance compliance with 35 Ill. Adm. CodeSectionCode 302.102.
- 1022 e) The procedures of Subpart F set forth minimum data requirements, appropriate 1023 test protocols and data assessment methods for establishing criteria under 1024 pursuant to subsections (a), (b), and (c). No other procedures may be used to 1025 establish such criteria unless approved by the Board in a rulemaking or adjusted 1026 standards proceeding under pursuant to Title VII of the Act. The validity and 1027 applicability of the Subpart F procedures may not be challenged in any proceeding 1028 brought under pursuant to Titles VIII or X of the Act, although the validity and 1029 correctness of application of the numeric criteria derived under pursuant to 1030 Subpart F may be challenged in such proceedings under pursuant to subsection 1031 (f).
- 1033 f) Challenges to application of criteria 1034
 - A permittee may challenge the validity and correctness of application of a criterion derived by the Agency under<u>pursuant to</u> this Section only at the time such criterion is first applied in an NPDES permit under<u>pursuant to</u> 35 Ill. Adm. Code 309.152 or in an action under <u>pursuant to</u> Title VIII of

	1039 1040 1041 1042 1043 1044			the Act for violation of the toxicity water quality standard. Failure of a person to challenge the validity of a criterion at the time of its first application <u>willshallwill</u> constitute a waiver of such challenge in any subsequent proceeding involving application of the criterion to that person.
	1044 1045 1046 1047 1048 1049 1050			Consistent with subsection (f)(1), if a criterion is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion in a permit appeal <u>underpursuant tounder</u> Section 40 of the Act and 35 Ill. Adm. Code 309.181. In any such action, the Agency shall include in the record all information upon which it has relied in developing and applying the criterion, whether such information was
	1051 1052 1053 1054 1055 1056 1057			developed by the Agency or submitted by the Petitioner. THE BURDEN OF PROOF SHALL BE ON THE PETITIONER TO DEMONSTRATE THAT THE CRITERION-BASED CONDITION IS NOT NECESSARY TO ACCOMPLISH THE PURPOSES OF SUBSECTION (a) (Section 40(a)(1) of the Act), but there is no presumption in favor of the general validity and correctness of the application of the criterion as reflected in the challenged condition.
	1058 1059 1060 1061 1062 1063 1064		,	Consistent with subsection $(f)(1)$, in an action where alleged violation of the toxicity water quality standard is based on alleged excursion of a criterion, the person bringing such action <u>willshallwill</u> have the burdens of going forward with proof and of persuasion regarding the general validity and correctness of application of the criterion.
	1064 1065 1066 1067 1068	g)		tions (a) through (e) do not apply to USEPA registered pesticides approved atic application and applied <u>underpursuant tounder</u> the following ons:
	1069 1070 1071		,	Application must <u>-shall</u> be made in strict <u>compliance</u> accordance <u>compliance</u> with label directions;
	1071 1072 1073 1074 1075		,	Applicator must <u>shall</u> be properly certified under the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972));
	1075		3)	Applications of aquatic pesticides must be in

		POLLUTION CONTROL BOARD
		NOTICE OF PROPOSED AMENDMENTS
1077		<u>complianceaccordancecompliance</u> with the laws, regulations and
1078		guidelines of all state and federal agencies authorized by law to regulate,
1079		use or supervise pesticide applications, among which is included the
1080		Department of Energy and Natural Resources pursuant to Section 3 of
1081		"AN ACT in relation to natural resources, research, data collection and
1082		environmental studies", Ill. Rev. Stat. 1987 ch. 96 1/2, par. 7403.
1083		
1084		4) Aquatic <u>-No aquatic</u> pesticide must not <u>-shall</u> be applied to waters affecting
1085		public or food processing water supplies unless a permit to apply the
1086		pesticide has been obtained from the Agency. All permits must shall be
1087		issued so as not to cause a violation of the Act or of any of the Board's
1088		rules or regulations. To aid applicators in determining their
1089		responsibilities under this subsection, a list of waters affecting public
1090		water supplies will be published and maintained by the Agency's Division
1091		of Public Water Supplies.
1092	(Saur	and Amended at 16 III Dec. offective
1093	(Sour	ce: Amended at 46 Ill. Reg, effective)
1094	ion 202	011 Town everture
1093 Sect 1096	1011 302.	211 Temperature
1090	a)	- Temperature has STORET number (F ^e) 00011 and (C ^e) 00010.
1097	a)	Temperature has STORET number (F) 00011 and (C) 00010.
1098		
1100	a <mark>]b</mark>)	There must not shall be no abnormal temperature changes that may adversely
1100	a <mark>10</mark>)	affect aquatic life unless caused by natural conditions.
1101		ancer aquate me uness caused by natural conditions.
1102	b]e)	The normal daily and seasonal temperature fluctuations which existed before the
1105	010)	addition of heat due to other than natural causes <u>mustshallmust</u> be maintained.
1101		
1105	c]d)	The maximum temperature rise above natural temperatures must shall-not exceed
1100	C <u>1</u> C)	2.8 $\stackrel{\circ}{\underline{C}^{\circ}C}$ (5 °F) 2.8° C (5° F) .
1108		
1109	d]e)	In addition, the water temperature at representative locations in the main river
1110)	must shall not exceed the maximum limits in the following table during more than
1111		one percent of the hours in the 12-month period ending with any month.
1112		Moreover, at no time shall the water temperature at such locations must never
1113		exceed the maximum limits in the following table by more than 1.7 °C (3 °F) 1.7 °
1114		C (3° F) .

NOTICE OF PROPOSED AMENDMENTS

1115 1116 1117		• -C	<u>•</u> ₽			e <u></u> ₽
1118	JAN.	_16	<u> </u>	_ JUL.	32	<u>90</u>
1119	FEB.	— 16 ——		-AUG.		<u>—90</u>
1120	MAR.	-16	60	SEPT.	32	<u>— 90</u>
1121	APR.	-32	90	OCT.	32	<u>— 90</u>
1122	MAY —	-32	90	NOV.	32	<u>— 90</u>
1123	JUNE	32	90	DEC.	<u> 16 </u>	<u>—60</u>
1124						
		<u>°C</u>	<u>°F</u>		<u>°C</u>	<u>°F</u>
	JAN	<u>16</u>	<u>60</u>	Л	<u>JL. 32</u>	<u>90</u>
	FEB.	$ \begin{array}{r} \underline{16} \\ \underline{16} \\ \underline{16} \\ \underline{32} \\ \underline{32} \\ \underline{32} \\ \underline{32} \\ \underline{32} \end{array} $	$ \begin{array}{c} 60\\ 60\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 9$	A	JL. 32 UG. 32 EPT. 32 CT. 32 OV. 32 EC. 16	90 90 90 90 90 90 60
	MAR.	<u>16</u>	<u>60</u>	SI	<u>EPT. 32</u>	<u>90</u>
	<u>APR.</u>	<u>32</u>	<u>90</u>	<u>O</u>	<u>CT.</u> <u>32</u>	<u>90</u>
	<u>MAY</u>	<u>32</u>	<u>90</u>		<u>OV.</u> <u>32</u>	<u>90</u>
	JUNE	<u>32</u>	<u>90</u>	D	<u>EC. 16</u>	<u>60</u>
1125						

1126 The owner or operator of a source of heated effluent which discharges 150 e)f) 1127 megawatts (0.5 billion British thermal units per hour) or more must shall demonstrate in a hearing before the this Pollution Control Board (Board) not less 1128 1129 than 5 nor more than 6 years after the effective date of these regulations or, Board 1130 in the case of new sources, after the commencement of operation, that discharges 1131 from that source have not caused and cannot be reasonably expected to cause significant ecological damage to the receiving waters. If the demonstrationsuch 1132 1133 proofdemonstration is not made to the satisfaction of the Board, the Board must 1134 order appropriate corrective measures to be implemented shall be ordered to be 1135 takenimplemented within a reasonable time as determined by the Board. 1136

- 1137 Permits for heated effluent discharges, whether issued by the Board or the Illinois f)g) 1138 Environmental Protection Agency (Agency), can be revised if shall be subject to 1139 revision in the event that reasonable future development creates a need for 1140 reallocation of the assimilative capacity of the receiving stream as defined in the 1141 regulation above. 1142
- 1143 The owner or operator of a source of heated effluent must shall-maintain such g)h) 1144 records and conduct such studies of the effluents from the such sources and of

1145 1146			its as may be required by the Agency or in any permit granted under the A_{1}
1140		HIHOIS EA	ivironmental Protection Act (Act) <u>Act</u> .
1147	h <mark>]i</mark>)		te corrective measures will be required if, upon complaint filed in <u>eaccordancecompliance</u> with Board rules, it is found at any time that
1150		-	d effluent causes significant ecological damage to the receiving stream.
1150		uny neuter	a ennaem eauses significant cooregrear aamage to the receiving stream.
1152	i]j)	All efflue	nts to an artificial cooling lake must comply with the applicable
1153	-1)		s of the thermal water quality standards as set forth in this Section and
1154		-	m. Code 303, except when all of the following requirements are met:
1155			
1156		1) Al	l discharges from the artificial cooling lake to other waters of the State
1157			mply with the applicable provisions of subsections $(\frac{aba}{ba})$ through $(\frac{ded}{ba})$.
1158			
1159		2) Th	he heated effluent discharged to the artificial cooling lake complies with
1160		· · · · · · · · · · · · · · · · · · ·	other applicable provisions of this Chapter, except subsections (aba)
1161		th	rough (<u>ded</u>).
1162			
1163		3) At	an adjudicative hearing the discharger must <u>shall</u> satisfactorily
1164		de	monstrate to the Board that the artificial cooling lake receiving the
1165		he	ated effluent will be environmentally acceptable, and within the intent
1166		of	the Act, including , but not limited to :
1167			
1168		A)	providingprovision of providing conditions capable of supporting
1169			shellfish, fish and wildlife, and recreational uses consistent with
1170			good management practices, and
1171			
1172		B)	
1173			discharger's effluent by a technologically feasible and
1174			economically reasonable method.
1175			
1176		· · · · · · · · · · · · · · · · · · ·	e required <u>demonstrationshowingdemonstration</u> in subsection (j)(3)
1177			ay take the form of an acceptable final environmental impact statement
1178			pertinent provisions of environmental assessments used in the
1179			eparation of the final environmental impact statement, or may take the
1180			rm of a demonstration <u>undershowing pursuant tounder</u> Section 316(a) of
1181			e Clean Water Act (CWA) (33 U.S.C. 1251 et seq.), which addresses the
1182		ree	quirements of subsection (j)(3).

ILLINOIS REGISTER 1st Notice JCAR350302-2207052r01 POLLUTION CONTROL BOARD **NOTICE OF PROPOSED AMENDMENTS** 1183 If the Board finds the demonstration to bean be adequate showing as 1184 5) 1185 provided in subsection (iii)(3)-is found, the Board mustshallmust promulgate specific thermal standards to be applied to the discharge to 1186 1187 that artificial cooling Lake. 1188 (Source: Amended at 46 Ill. Reg. ____, effective _____) 1189 1190 1191Section 302.212 Total Ammonia Nitrogen 1192 1193 Total ammonia nitrogen (as N: STORET Number 00610) must in no case exceed a) 1194 15 mg/L. 1195 1196 b) The total ammonia nitrogen (as N: STORET Number 00610) acute, chronic, and 1197 sub-chronic standards are determined by the equations given in subsections (b)(1)1198 and (b)(2) of this Section. Attainment of each standard must be determined by 1199 subsections (c) and (d) of this Section in mg/L. 1200 1201 1202 1) The acute standard (AS) is calculated using the following equation: 1203 1204 AS = -0.411<u>1 + 10^{7.204-pH}</u> <u>1 + 10pH-7.204</u> 1205 1206 $\frac{0.411}{1+10^{7.204\text{-pH}}} \stackrel{+}{=} \frac{58.4}{1+10^{\text{pH-7.204}}}$ AS 1207 1208 2) The chronic standard (CS) is calculated using the following equations: 1209 1210 A) During the Early Life Stage Present period, as defined in 1211 subsection (e) of this Section: 1212 1213 $\frac{1}{1}$ When water temperature is less than or equal to 14.51° °C: 1214 1215

$$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (2.85)$$

ILLINOIS REGIST	ER1 st Notice JCAR350302-2207052r01
	POLLUTION CONTROL BOARD
I	NOTICE OF PROPOSED AMENDMENTS
1217	$\underline{\text{CS}} \equiv \left\{ \frac{0.0577}{1+10^{7.688-\text{pH}}} \pm \frac{2.487}{1+10^{\text{pH-7.688}}} \right\} (2.85)$
1218 1219 1220	$\frac{1}{10}$ When water temperature is above 14.51° <u>C</u> °C:
1221	$\mathrm{CS} = \left\{ \frac{0.0577}{1+10^{7.688-\mathrm{pH}}} + \frac{2.487}{1+10^{\mathrm{pH}-7.688}} \right\} \left(1.45*10^{0.028*(25-\mathrm{T})} \right)$
1222 1223	
	$\underline{\text{CS}} \equiv \underline{\left\{ \frac{0.0577}{\underline{1+10}^{7.688\text{-pH}}} \stackrel{+}{=} \frac{\underline{2.487}}{\underline{1+10}^{\text{pH-7.688}}} \right\}} \underline{\left\{ (1.45*10^{0.028*(25\text{-T})}) \right\}}$
1224 1225 1226	Where T = Water Temperature, degrees Celsius
1227 1228	B) During the Early Life Stage Absent period, as defined in subsection (e) of this Section:
1229 1230 1231	$\frac{i}{i}$ When water temperature is less than or equal to $7^{\text{e}} \underline{\overset{\circ}C}$:
1232	$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.504})$
1233 1234	
1005	$\underline{\text{CS}} \equiv \underbrace{\left\{ \underbrace{0.0577}_{\underline{1+10}^{7.688-\text{pH}}} \pm \underbrace{2.487}_{\underline{1+10}^{\text{pH-7.688}}} \right\}}_{\underline{1+10}^{\text{pH-7.688}}} \underbrace{(\underline{1.45*10}^{0.504})}_{\underline{1+10}^{0.504}}$
1235 1236	$\frac{1}{1}$ When water temperature is greater than $7^{\circ}C_{\circ}C_{\circ}$:
1237	$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.028(25-T)})$
1238 1239 1240	
1240	$\underline{\text{CS}} \equiv \left\{ \frac{\underline{0.0577}}{1+10^{7.688-\text{pH}}} \pm \frac{\underline{2.487}}{1+10^{\text{pH-7.688}}} \right\} \underline{(1.45*10^{0.028*(25-\text{T})})}$
1241	

+	ILLINOIS R	EGISTER1 st Notice	JCAR350302-2207052r01
		POLLUTION	CONTROL BOARD
		NOTICE OF PROP	OSED AMENDMENTS
1242 1243 1244		Where T	= Water Temperature, degrees Celsius
1245 1246 1247		3) The sub-chronic standa	rd is equal to 2.5 times the chronic standard.
1247 1248 1249	c)	Attainment of the Total Ammo	nia Nitrogen Water Quality Standards
1250 1251 1252 1253		exceeded at any time ex	l ammonia nitrogen (in mg/L) must not be cept in those waters for which the Agency has 5 Ill. Adm. <u>Codepursuant to SectionCode</u> 302.102.
1254 1255 1256 1257 1258 1259 1260 1261		not exceed the chronic mixing is allowed <u>unde</u> 302.102 -of this Part . A <u>underpursuant tounder</u> four samples collected that statistically represe	entration of total ammonia nitrogen (in mg/L) must standard (CS) except in those waters in which rpursuant tounder 35 Ill. Adm <u>CodeSection. Code</u> ttainment of the chronic standard (CS) is evaluated subsection (d) of this Section by averaging at least at weekly intervals or at other sampling intervals nt a 30-day sampling period. The samples must be nat assures a representative sampling period.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271		not exceed the sub-chro mixing is allowed unde 302.102. Attainment of subsection (d) of this Subsection four co	Attration of total ammonia nitrogen (in mg/L) must nic standard except in those waters in which r 35 Ill. Adm. <u>Codepursuant to SectionCode</u> If the sub-chronic standard is evaluated pursuant to ection by averaging daily sample results collected nsecutive days within the 30-day averaging period. Indected in a manner that assures a representative
1272 1273 1274 1275 1276 1277	d)	temperature and pH of the wate sample. The concentration of t the calculated water quality sta	each water body must be calculated based on the er body measured at the time of each ammonia otal ammonia in each sample must be divided by indard for the sample to determine a quotient. The ed if the mean of the sample quotients is less than of the averaging period.
1278 1279	e)	The Early Life Stage Present p	eriod occurs from March through October. In

NOTICE OF PROPOSED AMENDMENTS

1280addition, during any other period when early life stages are present, and where the1281water quality standard does not provide adequate protection for these organisms,
the water body must meet the Early Life Stage Present water quality standard. All
1283 other periods are subject to the Early Life Stage Absent period.
1284
1285 BOARD NOTE: Acute and chronic standard concentrations for total ammonia nitrogen
1286 (in mg/L) for different combinations of pH and temperature are shown in Appendix C.
1287
1288 (Source: Amended at 46 Ill. Reg, effective)
1289
1290 SUBPART C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS
1291
1292Section 302.301 Scope and Applicability
1293
1294Subpart C contains the public and food processing water supply standards. These are cumulative
1295 with the general use standards of Subpart B and must be met in all waters designated in Part 303
1296at any point at which water is withdrawn for treatment and distribution as a potable supply or for
1297food processing. Waters of the State are generally designated for public and food processing use
1298(35 Ill. Adm. <u>CodeSectionCode</u> 303.202).
1299
1300 (Source: Amended at 46 Ill. Reg, effective)
1301
1302Section 302.302 Algicide Permits
1303
1304The water quality standards of Subparts B and C may be exceeded if the such the occurrence
1305results from applying the application of applying an algicide under in accordance with the terms
1306ofunder an algicide permit issued by the Agency under 35 Ill. Adm. Codepursuant to PartCode
1307602.
1308
1309(Note: Prior to codification, Rules 203 and 204(d) of Ch 6: Public Water Supplies.)
1310 (Source: Amended at 46 Ill. Reg, effective)
1311
1312Section 302.303 Finished Water Standards
1313
1314Water must <u>shall</u> be of such quality that with treatment consisting of coagulation, sedimentation,
1315 filtration, storage and chlorination, or other equivalent treatment processes, the treated water
1316 <u>meets</u> shall meet in <u>meets</u> all respects the requirements of 35 Ill. Adm. <u>CodePartCode</u> 611.

POLLUTION CONTROL BOARD

• • • • • • • • • • • • • • • • • • •	Hote: Prior to codification, Table I, Rule 304	of Ch 6: Public Wate	r Supplies)
1319			
	(Source: Amended at 46 Ill. Reg.	, effective)
1321			
	ection 302.304 Chemical Constituents		
1323			
•	ne following levels of chemical constituents	s must <u>-shall</u> not be exc	eeded:
1325 1326		CONC	ΈΝΙΤΡΑΤΙΟΝ
	CONSTITUENT		
1327	CONSTITUENT	(ing/ <u>L</u>	7
1328	Arsenic (total)	0.05	
	Barium (total)	<u> </u>	
	Boron (total)		
1332	Cadmium (total)	0.010	
1333	Chloride (total)	250	
1334			
1335	Fluoride (total)		
1336		0.3	
1337		0.05	
1338		<u> </u>	
1339		<u> </u>	
1340	Oil (hexane-solubles		
1341	or equivalent)	0.1	
1342			
1343			
1	Pesticides		
1345	Chlorinated Hydro-		
	carbon Insecticides		
	Aldrin		
1	Chlordane		
1	DDT		
1350	Dieldrin	0.001	
1351	Endrin	0.0002	
1352	Heptachlor	0.0001	
1353	Heptachlor Expoxide		
1354	Lindane	0.004	
1355	Methoxychlor	0.1	

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

1356	Toxaphene	0.0005
1357	Organophosphate	
1358	Insecticides	
1359	Parathion	
1360	Chlorophenoxy Herbicides	
1361	2,4-Dichlorophenoxy-	
1362	acetic acid (2,4-D)	0.1
1363	2-(2,4,5-Trichloro-	
1364	phenoxy)-propionic	
1365	acid (2,4,5-TP	
1366	or Silvex)	0.01
1367	Phenols	0.001
1368	Selenuim (total)	0.01
1369	Sulphates	<u> </u>
1370	Total Dissolved Solids	<u> </u>
1271		

	CONCENTRATION
CONSTITUENT	<u>(mg/L)</u>
Arsenic (total)	<u>0.05</u>
Barium (total)	1.0
Boron (total)	$\overline{1.0}$
Cadmium (total)	$\frac{\overline{\underline{1.0}}}{\underline{\underline{1.0}}}$ $\underline{0.010}$
Chloride (total)	250
Chromium	0.05
Fluoride (total)	1.4
Iron (dissolved)	$\overline{0.3}$
Lead (total)	$\overline{0.05}$
Manganese (total)	$\overline{1.0}$
Nitrate-Nitrogen	$\overline{10}$
Oil (hexane-solubles	$ \begin{array}{r} \underline{0.05} \\ \underline{1.4} \\ \underline{0.3} \\ \underline{0.05} \\ \underline{1.0} \\ \underline{10} \\ \underline{0.1} \end{array} $
or equivalent)	
Organics	
Pesticides	
Chlorinated Hydro-	
carbon Insecticides	
Aldrin	0.001
Chlordane	0.003

T		DDT	0.05	
		Dieldrin	$\frac{0.05}{0.001}$	
		Endrin	$\frac{0.001}{0.0002}$	
		Heptachlor	$\frac{0.0002}{0.0001}$	
		Heptachlor Expoxide	$\frac{0.0001}{0.004}$	
		Lindane	$\frac{0.004}{0.1}$	
		Methoxychlor	$\underline{\underline{0.1}}$	
		Toxaphene	<u>0.0005</u>	
		Organophosphate		
		Insecticides		
		Parathion	<u>0.1</u>	
		Chlorophenoxy Herbicides		
		<u>2,4-Dichlorophenoxy-</u>		
		acetic acid (2,4-D)	<u>0.1</u>	
		<u>2-(2,4,5-Trichloro-</u>		
		phenoxy)-propionic		
		acid (2,4,5-TP		
		or Silvex)	<u>0.01</u>	
		Phenols	0.001	
		Selenuim (total)	0.01	
		Sulphates	250	
		Total Dissolved Solids	500	
•	1372			
	1373	(Source: Amended at 46 Ill. Reg, effective)	
•	1374	· · · · · · · · · · · · · · · · · · ·		
	1375 S	ection 302.305 Other Contaminants		
	1376			
	13770	ther contaminants which will not be adequately reduced by the tr	reatment processes-	noted in 35
		. Adm. CodeSectionCode 302.303 must shallmust not be present		
'		Iman health.		
	1380			
	1381	(Source: Amended at 46 Ill. Reg, effective)	
1	1382		/	
		ection 302.306 Fecal Coliform		
	1384			
		otwithstanding the provisions of 35 Ill. Adm. CodeSectionCode	302.209. at no time	shall the
I		cometric mean, based on a minimum of five samples taken over a		
Ι	0	fecal coliform (STORET number 31616) exceed 2000 per 100 i		any period,
I	150701			

POLLUTION CONTROL BOARD

	1388		
	1389	(Sourc	e: Amended at 46 Ill. Reg, effective)
'	1390	[×]	
	1391Section	n 302.3	07 Radium 226 and 228
	1392		
	1393Radiur	n 226 a	nd 228-(STORET number 11503) combined concentration must not exceed 5
•			liter (pCi/L) at any time.
	1395	-	
	1396	(Sourc	e: Amended at 46 Ill. Reg, effective)
	1397		
	1398		SUBPART D: CHICAGO AREA WATERWAY SYSTEM
	1399	AND	LOWER DES PLAINES RIVER WATER QUALITY STANDARDS AND
	1400		INDIGENOUS AQUATIC LIFE STANDARDS
	1401		
	1402Section	n 302.4	01 Scope and Applicability
	1403		
	1404	a)	Subpart D contains the standards that must be met only by the South Fork of the
	1405		South Branch of the Chicago River (Bubbly Creek). The Subpart B general use
	1406		and Subpart C public and food processing water supply standards-of this Part do
	1407		not apply to Bubbly Creek.
	1408		
	1409	b)	Subpart D also contains the Chicago Area Waterway System and Lower Des
	1410		Plaines River water quality standards. Except for the Chicago River, these
	1411		standards must be met only by waters specifically designated in 35 Ill. Adm. Code
	1412		303. The Subpart B general use and Subpart C public and food processing water
	1413		supply standards of this Part do not apply to waters described in 35 Ill. Adm.
	1414		Code 303.204 as the Chicago Area Waterway System or Lower Des Plaines River
	1415		and listed in 35 Ill. Adm. Code 303.220 through 303.240, except that waters
	1416		designated as Primary Contact Recreation Waters in 35 Ill. Adm. Code 303.220
ı	1417		must meet the numeric water quality standard for bacteria applicable to protected
I	1418 1419		waters in 35 Ill. Adm. <u>CodeSectionCode</u> 302.209-of this Part. The Chicago River must meet the general use standards, including the numeric water quality standard
	1419		for fecal coliform bacteria applicable to protected waters in 35 Ill. Adm.
I	1420		CodeSectionCode 302.209-of this Part.
I	1421		<u>code</u> Section <u>code</u> 302.209 of this Fait.
I	1422	(Souro	e: Amended at 46 Ill. Reg, effective)
1	1423	Junce	. Amended at 1 0 m. Reg, encenve)
		n 302 4	02 Purpose
	1723Stell0	1 304.7	

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

1426

1427The Chicago Area Waterway System and Lower Des Plaines River standards-shall protect 1428primary contact, incidental contact or non-contact recreational uses (except when designated as 1429non-recreational waters); commercial activity, including navigation and industrial water supply 1430uses; and the highest quality aquatic life and wildlife that is attainable, limited only by the 1431physical condition of these waters and hydrologic modifications to these waters. The numeric 1432and narrative standards-contained in this Part will assure the protection of the aquatic life, 1433 wildlife, human health, and recreational uses of the Chicago Area Waterway System and Lower 1434Des Plaines River as those uses are defined in 35 Ill. Adm. Code 301 and designated in 35 Ill. 1435Adm. Code 303. Indigenous aquatic life standards are intended for the South Fork of the South 1436Branch of the Chicago River (Bubbly Creek), which is capable of supporting an indigenous 1437aquatic life limited only by the physical configuration of the body of water, characteristics and 1438 origin of the water and the presence of contaminants in amounts that do not exceed the water 1439 quality standards listed in this Subpart D. However, the Chicago River is required to meet the 1440general use standard, including the water quality standard for fecal coliform bacteria applicable 1441to protected waters in 35 Ill. Adm. CodeSectionCode 302.209 of this Part. 1442 1443 (Source: Amended at 46 Ill. Reg. ____, effective _____) 1444 1445Section 302.403 Unnatural Sludge 1446 1447Waters subject to this subpart must shall be free from unnatural sludge or bottom deposits, 1448floating debris, visible oil, odor, unnatural plant or algal growth, or unnatural color or turbidity. 1449 1450 (Source: Amended at 46 Ill. Reg. ____, effective _____) 1451 1452Section 302.404 pH 1453 1454pH must-shall be within the range of 6.5 to 9.0 except for natural causes, except for the South 1455Fork of the South Branch of the Chicago River (Bubbly Creek) for which pH must shall be 1456 within the range of 6.0 to 9.0 except for natural causes. 1457 1458 (Source: Amended at 46 Ill. Reg. _____, effective _____) 1459 1460Section 302.405 Dissolved Oxygen 1461 1462Dissolved oxygen concentrations must-shall not be less than the applicable values in subsections

1463(a), (b), (c), and (d).

POLLUTION CONTROL BOARD

1464			
1465	a)	For the Sou	th Fork of the South Branch of the Chicago River (Bubbly Creek),
1466		dissolved of	xygen concentrations must <u>-shall</u> not be less than 4.0 mg/L at any time.
1467			
1468	b)	For the Upp	ber Dresden Island Pool Aquatic Life Use waters listed in 35 Ill. Adm.
1469		Code 303.2	30:
1470			
1471		1) duri	ng the period of March through July:
1472			
1473		A)	6.0 mg/L as a daily mean averaged over 7 days; and
1474			
1475		B)	5.0 mg/L at any time; and
1476			
1477		2) duri	ng the period of August through February:
1478			
1479		A)	5.5 mg/L as a daily mean averaged over 30 days;
1480			
1481		B)	4.0 mg/L as a daily minimum averaged over 7 days; and
1482			
1483		C)	3.5 mg/L at any time.
1484			
1485	c)		cago Area Waterway System Aquatic Life Use A waters listed in 35
1486		Ill. Adm. C	ode 303.235:
1487			
1488		1) duri	ng the period of March through July, 5.0 mg/L at any time; and
1489			
1490		2) duri	ng the period of August through February:
1491			
1492		A)	4.0 mg/L as a daily minimum averaged over 7 days; and
1493			
1494		B)	3.5 mg/L at any time.
1495			
1496	d)		cago Area Waterway System and Brandon Pool Aquatic Life Use B
1497		waters liste	d in 35 Ill. Adm. <u>CodeSectionCode</u> 303.240:
1498			
1499		1) 4.0	mg/L as a daily minimum averaged over 7 days; and
1500			
1501		2) 3.5	mg/L at any time.

1502			
1503	e)	Asses	sing attainment of dissolved oxygen mean and minimum values.
1504			
1505		1)	Daily mean is the arithmetic mean of dissolved oxygen concentrations in
1506			24 consecutive hours.
1507			
1508		2)	Daily minimum is the minimum dissolved oxygen concentration in 24
1509			consecutive hours.
1510			
1511		3)	The measurements of dissolved oxygen used to determine attainment or
1512		,	lack of attainment with any of the dissolved oxygen standards in this
1513			Section must assure daily minima and daily means that represent the true
1514			daily minima and daily means.
1515			
1516		4)	The dissolved oxygen concentrations used to determine a daily mean or
1517		,	daily minimum should not exceed the air-equilibrated concentration.
1518			
1519		5)	"Daily minimum averaged over 7 days" means the arithmetic mean of
1520			daily minimum dissolved oxygen concentrations in 7 consecutive 24-hour
1521			periods.
1522			
1523		6)	"Daily mean averaged over 7 days" means the arithmetic mean of daily
1524			mean dissolved oxygen concentrations in 7 consecutive 24-hour periods.
1525			
1526		7)	"Daily mean averaged over 30 days" means the arithmetic mean of daily
1527			mean dissolved oxygen concentrations in 30 consecutive 24-hour periods.
1528			
1529	(Sour	ce: Am	ended at 46 Ill. Reg, effective)
1530			
1531Section	on 302.4	407 Ch	emical Constituents
1532			
1533	a)	The ad	cute standard (AS) for the chemical constituents listed in subsection (e)
1534		must <mark>-</mark>	shall not be exceeded at any time except as provided in subsection (d).
1535			
1536	b)	The cl	hronic standard (CS) for the chemical constituents listed in subsection (e)
1537			shall not be exceeded by the arithmetic average of at least four consecutive
1538			es collected over any period of four days, except as provided in subsection
1539		(d). T	The samples used to demonstrate attainment or lack of attainment with a CS

1540				an average representative of the
1541		sampling period. Fo	r the chemical constitu	ients that have water quality based
1542		standards dependent	upon hardness, the ch	ronic water quality standard will be
1543		calculated according	to subsection (e) using	g the hardness of the water body at the
1544		time the sample was	collected. To calculat	e attainment status of chronic
1545		standards, the conce	ntration of the chemica	al constituent in each sample is divided
1546				the sample to determine a quotient.
1547		•	1 1	e mean of the sample quotients is less
1548		1 0	for the duration of the	1 1
1549		Ĩ		
1550	c)	The human health st	andard (HHS) for the o	chemical constituents listed in
1551	,		· · · · · ·	on a 12-month rolling average based on
1552		at least eight sample	s, collected in a manne	er representative of the sampling
1553			vided in subsection (d	
1554			× ×	, ,
1555	d)	In waters where mix	ing is allowed under p	ursuant to 35 Ill. Adm.
1556	,		02.102 of this Part , the	
1557				
1558		1) The AS must	t <mark>-shall</mark> not be exceeded	in any waters except for those waters
1559		for which a z	one of initial dilution	(ZID) applies under pursuant to 35 Ill.
1560			ectionCode 302.102-o	
1561				
1562		2) The CS must	shall not be exceeded	outside of waters in which mixing is
1563			-	dm. CodeSectionCode 302.102-of this
1564		Part.	1	
1565				
1566		3) The HHS mu	ist -shall not be exceede	ed outside of waters in which mixing is
1567		,	-	dm. CodeSectionCode 302.102-of this
1568		Part. .	1	
1569				
1570	e)	Numeric Water Qua	lity Standards for the F	Protection of Aquatic Organisms
1571	,			1 C
			AS	CS
		Constituent	$(\mu \sigma/L)$	(ug/I)

	AS	CS
Constituent	(µg/L)	$(\mu g/L)$
Arsenic	340 X 1.0*=340	150 X 1.0*=150
(trivalent, dissolved)		
Benzene	4200	860

Cadmium	e ^{A+B ln(H)} X	e ^{A+B ln(H)} X
(dissolved)	{1.138672-[(lnHln(H)	{1.101672-[(ln(H))(0.04
)(0.041838)]}*, where	1838)]}*, where A=
	A=-2.918 and B=1.128	-3.490 and B=0.7852
Chromium	16	11
(hexavalent, total)		
Chromium (trivalent,	$e^{A+B\ln(H)} \ge 0.316^*,$	$e^{\text{A+B}\ln(\text{H})} \ge 0.860^*,$
dissolved)	where A=3.7256 and	where A=0.6848 and
	B=0.8190	B=0.8190
Copper	$e^{A+B \ln(H)} \ge 0.960^*,$	$e^{A+B \ln(H)} \ge 0.960*_{\frac{2}{2}}$
(dissolved)	where A=-1.645 and	where A=-1.646 and
	B=0.9422	B=0.8545
Cyanide**	22	10
Ethylbenzene	150	14
Fluoride (total)	$e^{A+B\ln(H)}$	$e^{A+B\ln(H)}$, but
	where $A = 6.7319$	mustshallmust not
	and $B = 0.5394$	exceed
		4.0 mg/L_{2}
		where $A = 6.0445$ and <i>B</i>
т 1	$e^{A+B\ln(H)} X$	= 0.5394 e ^{A+B ln(H)} X
Lead	• • • • • • • • • • • • • • • • • • • •	0 11
(dissolved)	{1.46203-[(ln(H))(0.145	{1.46203-[(ln(H))(0.145
	712)]}*, where A=-1.301 and	712)]}*, where A=-2.863 and
	B=1.273	B=1.273
	D-1.2/3	D -1.275
Manganese	$e^{A+B\ln(H)} X 0.9812^*,$	<i>e</i> ^{A+B ln(H)} X 0.9812*,
(dissolved)	where $A=4.9187$	where $A=4.0635$
(unsserved)	and <i>B</i> =0.7467	and <i>B</i> =0.7467
Mercury (dissolved)	1.4 X 0.85*=1.2	0.77 X 0.85*=0.65
Nickel (dissolved)	$e^{A+B\ln(H)} X 0.998^*,$	$e^{A+B \ln(H)} X 0.997^*,$
()	where $A=0.5173$ and	where $A=-2.286$ and
	B=0.8460	B=0.8460
Toluene	2000	600
TRC	19	11
Xylene(s)	920	360

POLLUTION CONTROL BOARD

Zinc (dissolve	d)	<i>e</i> ^{A+B ln(H)} X 0.978*, where A=0.9035 and B=0.8473	$e^{A+B \ln(H)} X 0.986^*,$ where A =-0.4456 and B=0.8473
where:			
μg/L = 1	microgram	ı per liter,	
H	Hardness o	concentration of receiving	g water in mg/L as CaCO₃,
<i>e</i> *	base of nat	tural logarithms raised to	the x- power,
N 10	natural log	arithm of Hardness in <u>m</u>	<u>g/L as CaCO</u> 3milligrams per
liter,			
*(conversion	i factor multiplier for dis	solved metals, and
<u>** _</u> ,	standard to	be evaluated using eithe	er of the following USEPA
appr 301. Injec Doc	oved meth 106: Met ction, Liga ument Nu	hods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe	rometry, January 2004, I or Cyanide Amenable to
appr 301. Injec Doc	oved meth 106: Met ction, Liga ument Nu orination, so microgra	nods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter	erence at 35 III. Adm. Code ailable Cyanide by Flow prometry, January 2004, I-or Cyanide Amenable to CN-G (40 CFR 136.3).
appr 301. Injec Doc Chle	oved meth 106: Met ction, Liga ument Nu orination, so microgra	nods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, I or Cyanide Amenable to
appr 301. Injec Doc Chic	oved meth 106: Met ction, Liga ument Nu orination, S microgra <u>Hardness</u>	nods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, I or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃
appr 301. Injec Doc Chik	oved meth 106: Met ction, Liga ument Nu prination, S <u>microgra</u> <u>Hardness</u> <u>base of n</u>	hods, incorporated by ref hod OIA-1677, DW: Ave und Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- um per liter s concentration of receive	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, I- or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	oved meth 106: Met etion, Liga ument Nu- prination, f microgra <u>Mardness</u> base of n natural lo	hods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter s concentration of receive atural logarithms raised	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, For Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power mg/L as CaCO ₃
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	oved meth 106: Met etion, Liga ument Nu- prination, s <u>microgra</u> <u>Hardness</u> <u>base of n</u> <u>natural le</u> <u>conversions</u>	tods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter s concentration of receive atural logarithms raised ogarithm of Hardness in on factor multiplier for d to be evaluated using eit	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, I or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power mg/L as CaCO ₃ issolved metals her of the following USEPA
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	oved meth 106: Met ction, Liga ument Nu prination, S <u>microgra</u> <u>Hardness</u> <u>base of n</u> <u>natural lo</u> <u>conversis</u> <u>standard</u> <u>approved</u>	bods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter s concentration of receive atural logarithms raised ogarithm of Hardness in on factor multiplier for d to be evaluated using eit a methods, incorporated 1	erence at 35 III. Adm. Code ailable Cyanide by Flow prometry, January 2004, I or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power mg/L as CaCO ₃ issolved metals
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	oved meth 106: Met etion, Liga ument Nu- prination, s <u>microgra</u> <u>Hardness</u> <u>base of n</u> <u>natural la</u> <u>conversions</u> <u>standard</u> <u>approvectors</u>	tods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter s concentration of receive atural logarithms raised ogarithm of Hardness in on factor multiplier for d to be evaluated using eit 1 methods, incorporated 1 1.106: Method OIA-167 ection, Ligand Exchange	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, l or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power mg/L as CaCO ₃ issolved metals her of the following USEPA oy reference at 35 Ill. Adm. 7, DW: Available Cyanide by , and Amperometry, January
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	oved meth 106: Met ction, Liga ument Nu orination, S <u>microgra</u> <u>Hardness</u> <u>base of n</u> <u>natural lo</u> <u>conversis</u> <u>standard</u> <u>approvec</u> <u>Code 30</u> <u>Flow Inj</u> <u>2004, Do</u>	tods, incorporated by ref hod OIA-1677, DW: Ave and Exchange, and Ampe mber EPA-821-R-04-00 Standard Methods 4500- am per liter s concentration of receiving atural logarithms raised ogarithm of Hardness in a on factor multiplier for d to be evaluated using eit 1 methods, incorporated 1 1.106: Method OIA-167 ection, Ligand Exchange ocument Number EPA-8	erence at 35 III. Adm. Code ailable Cyanide by Flow rometry, January 2004, l or Cyanide Amenable to CN-G (40 CFR 136.3). ng water in mg/L as CaCO ₃ to the x-power mg/L as CaCO ₃ issolved metals her of the following USEPA oy reference at 35 Ill. Adm. 7, DW: Available Cyanide by , and Amperometry, January

where A=-6.52 and

[-57.478 + 5.79(H) +

54.163(C)] X 0.65

[1276.7+5.508(H)-1.457(

B=1.72

2.000

C)] X 0.65

mg/L

mg/L

mg/L

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

1593 f) Numeric Water Quality Standard for the Protection of Human Health 1594 1595 1596 Constituent HHS in micrograms per liter (µg/L) 1597 310 Benzene 1598 Mercury (total) 0.012 Phenols 860,000 1599 1600 Constituent HHS ($\mu g/L$) 310 Benzene Mercury (total) 0.012 Phenols 860,000 1601 1602 where: 1603 1604 microgram per liter. $\mu g/L$ 1605 = microgram per liter $\mu g/L$ 1606 1607 **g**) Numeric Water Quality Standards for Other Chemical Constituents 1608 1609 Concentrations of the following chemical constituents must-shall not be 1) 1610 exceeded except in waters for which mixing is allowed under pursuant to 1611 35 Ill. Adm. CodeSectionCode 302.102 of this Part. 1612 Constituent Unit Standard Iron (dissolved) 1.0 mg/L Selenium (total) 1.0 mg/L $e^{A+BlnB \ln(H)} X 0.85^*$. Silver (dissolved) μg/L

Sulfate (where H is ≥ 100 but

 \leq 500 and C is \geq 25 but \leq 500)

Sulfate (where H is > 100 but

Sulfate (where H > 500 and C \geq

 \leq 500 and C is \geq 5 but < 25)

	5)
1613	
1614	where:
1615	
1616	mg/L = milligram per liter,
1617	
1618	μg/L = microgram per liter,
1619	
1620	H = Hardness concentration of receiving water in mg/L as CaCO ₃ ,
1621	
1622	C = Chloride concentration of receiving water in mg/L,
1623	
1624	exp[*] = base of natural logarithms raised to the x-power,
1625	
1626	ln(H) = natural logarithm of Hardness in milligrams per liter, and
1627	
1628	* = conversion factor multiplier for dissolved metals
1629	
1630	2) From July 1, 2015 until July 1, 2018, the following concentrations for
1631	Chloride and Total Dissolved Solids must shall not be exceeded except in
1632	waters for which mixing is allowed under pursuant to 35 Ill. Adm.
1633	CodeSection 302.102 of this Part.
1634	
	Constituent Unit Standard
	Chloride mg/ 500
	during the period of May L
	1 through November 30
	Total Dissolved Solids mg/ 1,500
	during the period of L
	December 1 through
	April 30
1635	
1636	3)
1637	
	$\underline{mg/L} \equiv \underline{milligram per liter}$
	H = Hardness concentration of receiving water in mg/L as

ILLINOIS REG	ISTER 1st Notice JCAR350302-2207052r01
	POLLUTION CONTROL BOARD
	NOTICE OF PROPOSED AMENDMENTS
 1638	$\begin{array}{ccc} \underline{C} & \underline{CaCO_3} \\ \underline{Chloride \ concentration \ of \ receiving \ water \ in \ mg/L} \\ \underline{e_x} & \underline{=} & \underline{base \ of \ natural \ logarithms \ raised \ to \ the \ x-power} \\ \underline{ln(H)} & \underline{=} & \underline{natural \ logarithm \ of \ Hardness \ in \ milligrams \ per \ liter} \\ \underline{*} & \underline{=} & \underline{conversion \ factor \ multiplier \ for \ dissolved \ metals} \end{array}$
	2)
1639	Beginning July 1, 2018, the Chloride and Total Dissolved Solids standard
1640	in subsection $(g)(2)$ of this Section are repealed and the following
1641 1642	concentration for Chloride must shall not be exceeded except in waters for which mixing is allowed under pursuant to 35 Ill. Adm. CodeSectionCode
1643	302.102-of this Part:
1644	
	Constituent Unit Standard
1645	Chloride mg/L 500
1646	where:
1647	
1648 1649	mg/L = milligram per liter
1049	$\underline{mg/L} \equiv milligram per liter$
1650	
1651 h) C	Concentrations of other chemical constituents in the South Fork of the South
•	Branch of the Chicago River (Bubbly Creek) must <u>shall</u> not exceed the following
1653 s 1654	tandards:
1655	
	CONSTITUENT STORET NUMBER CONCENTRATION (mg/L)

POLLUTION CONTROL BOARD

Ammonia Un-ionized (as N*) 00612 0.1 Arsenic (total) 01002 1.0 Barium (total) 01007 5.0 Cadmium (total) 01027 0.15 Chromium (total hexavalent) 01032 0.3 01033 Chromium (total trivalent) 1.0 01042 Copper (total) 1.0 Cyanide (total) 00720 0.10 Fluoride (total) 00951 15.0 Iron (total) -01045 2.0 Iron (dissolved) -01046 0.5 Lead (total) -01051 0.1 1.0 Manganese (total) -01055 0.0005 Mercury (total) -71900 Nickel (total) -01067 1.0 00550,00556 Oil, fats and grease or 00560 15.0** Phenols 32730 0.3 Selenium (total) 01147 1.0 Silver -01077 1.1 Zinc (total) <u>-01092</u> 1.0 **Total Dissolved Solids** 70300 1500

* For purposes of this Section, the concentration of un-ionized ammonia

Ν

 $0.94412(1+10^{x})+0.0559$

mustshallmust be computed according to the following equation:

 $\overline{[0.94412(1 + 10^*)} + 0.0559]$

H

 $\frac{X = 0.09018 + 2729.92 \text{ pH}}{(T + 273.16)} - \text{pH}$

where:

NOTICE OF PROPOSED AMENDMENTS

1656 1657

1658

1659 1660 1661

1662

1663 1664

64

1665 1666

1667

ILLINOIS F	REGISTER 1 st Notice	JCAR350302-2207052r01
	POLLUTION CONTROL	BOARD
	NOTICE OF PROPOSED AMI	ENDMENTS
1669 1670 1671 1672	U = Concentration of un-ionized ammonia N = Concentration of ammonia nitrogen as T = Temperature in degrees Celsius	0
1672	$\underline{X} \equiv 0.09018 + \frac{2729.92 - pH}{(T + 273.16)}$ $\underline{U} \equiv \underline{Concentration of un-ionized amm}$ $\underline{N} \equiv \underline{Concentration of ammonia nitrog}$ $\underline{T} \equiv \underline{Temperature in degrees Celsius}$	
1673 ** 1674 ** 1675 1676 1677 1678	Oil <u>mustshallmust</u> be analytically separated if the total concentration exceeds 15 mg/L. components exceed 15 mg/L (i.e., 15 mg/L materials).	In no case shall either of the
1679 (So 1680	urce: Amended at 46 Ill. Reg, effective.	ve)
1683 a) 1684 1685 1686 1687	For the South Fork of the South Branch of temperature (STORET number (°F) 00011 exceed 34 °C (93 °F) 34°C(93°F) more than <u>°F)</u> 37.8°C (100°F <u>°F</u>) at any time.	and (⁶³ C) 00010) <u>must</u>shall<u>must</u> not
1688 b) 1689 1690 1691 1692 1693 1694	The temperature standards in subsections (a beginning July 1, 2018. Starting July 1, 20 Adm. Code 303 as Chicago Area Waterway Area Waterway System and Brandon Pool Area Waterway System Island Pool Aquatic Life Use <u>must</u> (STORET number (°F) 00011 and (°C) 000 more than 5% of the time, or 37.8 <u>°C (100 Starting Start</u>	15, the waters designated at 35 III. y System Aquatic Life Use A, Chicago Aquatic Life Use B, and Upper twillmust not exceed temperature 10 of 34 <u>°C°C</u> (93 <u>°F)34°C (93°F°F</u>)
1695 1696 c) 1697 1698	There must not <u>shall</u> be no abnormal tempe affect aquatic life unless caused by natural	
1699 d) 1700	The normal daily and seasonal temperature addition of heat due to other than natural ca	

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

- The maximum temperature rise above natural temperatures must never-shall not e) exceed 2.8 <u>°C (5 °F)2.8</u> °− °C (5 °F).
 - f) Water temperature at representative locations in the main river must never-shall not exceed the maximum limits in the applicable table in subsections (g), (h) and (i), during more than one percent of the hours in the 12-month period ending with any month. Moreover, at no time shall the The water temperature must not exceed the maximum limits in the applicable table that follows by more than 1.7 <u>°C (3.0 °F).</u>1.7° °C (3.0° °F).

Water temperature in the Chicago Area Waterway System Aquatic Life Use A g) waters listed in 35 Ill. Adm. Code 303.235 mustshallmust not exceed the limits in the following table in complainceaccordance compliance with subsection (f):

<u>(°F)(°</u>F)

90

Months Daily Maximum (°-C)-January February March-April May-June-July-August September October November **December**

Months	<u>Daily</u> <u>Maximum</u>	
	<u>(° C)</u>	<u>(° F)</u>
January	<u>16</u>	<u>60</u>
February	<u>16</u>	<u>60</u>
March	16	<u>60</u>

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

April	<u>32</u>	<u>90</u>
May	32	<u>90</u>
June	32	<u>90</u>
July	32	<u>90</u>
August	32	<u>90</u>
September	32	<u>90</u>
October	32	<u>90</u>
November	32	<u>90</u>
December	<u>16</u>	<u>60</u>

1732
1733 h) Water temperature in the Chicago Area Waterway System and Brandon Pool
1734 Aquatic Life Use B waters listed in 35 Ill. Adm. Code 303.240, <u>mustshall must</u>
1735 not exceed the limits in the following table in <u>complianceaccordancecompliance</u>
1736 with subsection (f):

Months	Daily Max	cimum
	<u>(° C)</u>	<u>(°F)(</u> °F)
January	<u> 16 </u>	<u> </u>
February	<u> </u>	<u> </u>
March	<u> 16 </u>	<u> </u>
April	32	<u>90</u>
May	32	<u> </u>
June-	<u>32</u>	<u> </u>
July	<u></u>	<u> </u>
August	$-\frac{32}{32}$	<u> </u>
September	$-\frac{32}{32}$	<u> </u>
October	$-\frac{32}{32}$	<u> </u>
November-	$-\frac{32}{32}$	<u> </u>
December	<u></u>	<u> </u>

Months	<u>Daily</u> <u>Maximum</u>		
	<u>(° C)</u>	<u>(°</u> F)	
January	<u>16</u>	<u>60</u>	
February	16	<u>60</u>	
March	<u>16</u>	<u>60</u>	

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

April	<u>32</u>	<u>90</u>
May	32	<u>90</u>
June	32	<u>90</u>
July	32	<u>90</u>
August	32	<u>90</u>
September	32	<u>90</u>
October	32	<u>90</u>
November	32	<u>90</u>
December	<u>16</u>	<u>60</u>

1754

1758

1774

i) Water temperature for the Upper Dresden Island Pool Aquatic Life Use waters, as
 defined in 35 Ill. Adm. Code 303.230, <u>mustshallmust</u> not exceed the limits in the
 following table in <u>complianceaccordancecompliance</u> with subsection (f):

1759	Months	Daily Marin	
	Months	— Daily Maxin	
1760		<u>(° C)</u>	$-(^{\circ}F)(^{\circ}F)$
1761			
1762	January	<u> <u>16 </u></u>	<u>—60</u>
1763	February	<u> 16 </u>	<u>—60</u>
1764	March	<u> <u>16 </u></u>	<u>—60</u>
1765	April	<u> </u>	90
1766	May	<u> </u>	90
1767	June	<u> </u>	<u>90</u>
1768	July	<u> 32 </u>	<u>90</u>
1769	August	<u> </u>	90
1770	September	<u> </u>	<u>90</u>
1771	October —	<u> </u>	90
1772	November-	<u> </u>	<u>90</u>
1773	December-	— <u>16</u>	<u>60</u>

Months	<u>Daily</u> <u>Maximum</u>	
	<u>(° C)</u>	<u>(°F)</u>
January	<u>16</u>	<u>60</u>
February	16	<u>60</u>
March	16	<u>60</u>
April	32	<u>90</u>

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

May	<u>32</u>	<u>90</u>
June	32	<u>90</u>
July	32	<u>90</u>
August	32	<u>90</u>
September	32	90
October	32	90
November	32	90
December	<u>16</u>	<u>60</u>

1775

1776 (Source: Amended at 46 Ill. Reg. ____, effective _____)

1777

1778Section 302.409 Cyanide for the South Fork of the South Branch of the Chicago River 1779(Bubbly Creek)

1780

1781Cyanide (total) must<u>-shall</u> not exceed 0.10 mg/L in the South Fork of the South Branch of the 1782Chicago River (Bubbly Creek).

1783

1784 (Source: Amended at 46 Ill. Reg. ____, effective _____)

1785

1786Section 302.410 Other Toxic Substances

1787

1788Any substance or combination of substances toxic to aquatic life not listed in Section 302.407 1789must<u>shall</u> not exceed one-half of the 96-hour median tolerance limit (96-hour TL_m) for native 1790fish or essential fish food organisms in the South Fork of the South Branch of the Chicago River 1791(Bubbly Creek). All other Chicago Area Waterway System and Lower Des Plaines River waters 1792as designated in 35 Ill. Adm. Code 303 must<u>shall</u> be free from any substances or combination of 1793substances in concentrations toxic or harmful to human health, or to animal, plant or aquatic life. 1794Individual chemical substances or parameters for which numeric standards are specified in this 1795Subpart are not subject to this Section.

1797	a)	Any substance or combination of substances will-shall be deemed to be toxic or
1798		harmful to aquatic life if present in concentrations that exceed the following:
1799		
1800		1) An Acute Aquatic Toxicity Criterion (AATC) validly derived and
1801		correctly applied <u>underpursuant tounder</u> procedures set forth in 35 Ill.
1802		Adm. CodeSectionsCode 302.612 through 302.618 of this Part or in 35 Ill.
1803		Adm. CodeSectionCode 302.621-of this Part; or
1804		

1805

1806

1807

1808 1809

1810

1811

1812 1813

1814

1818 1819

1820

1821 1822

1823 1824

1825

1826

1827 1828

POLLUTION CONTROL BOARD

- A Chronic Aquatic Toxicity Criterion (CATC) validly derived and correctly applied <u>underpursuant tounder</u> procedures set forth in 35 Ill. Adm. Code Section 302.627 or 302.630 of this Part.
- b) Any substance or combination of substances will<u>shall</u> be deemed to be toxic or harmful to wild or domestic animal life if present in concentrations that exceed any Wild and Domestic Animal Protection Criterion (WDAPC) validly derived and correctly applied under <u>pursuant to 35</u> Ill. Adm. <u>CodeSectionCode</u> 302.633-of <u>this Part</u>.
- 1815c)Any substance or combination of substances willshallbe deemed to be toxic or1816harmful to human health if present in concentrations that exceed criteria, validly1817derived and correctly applied, based on either of the following:
 - Disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs calculated under<u>pursuant to</u> 35 Ill. Adm. <u>CodeSectionsCode</u> 302.642 through 302.648 (Human Threshold Criterion) of this Part; or
 - Disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage calculated under<u>-pursuant</u> to 35 Ill. Adm. <u>CodeSectionsCode</u> 302.651 through 302.658 (Human Nonthreshold Criterion)-of this Part.
- 1829 d) The most stringent criterion of subsections (a), (b) and (c) applies shall apply at 1830 all points outside of any waters within which, mixing is allowed under pursuant to 35 Ill. Adm. CodeSectionCode 302.102-of this Part. In addition, the AATC 1831 1832 derived under pursuant to subsection (a)(1) applies shall apply in all waters except 1833 that it must shall not apply within a ZID that is prescribed in 1834 complianceaccordance with 35 Ill. Adm. CodeSectionCode 302.102-of this Part. 1835 1836
- 1837e)The procedures of Subpart F set forth minimum data requirements, appropriate1838test protocols, and data assessment methods for establishing criteria under1839pursuant to subsections (a), (b) and (c). No other procedures may be used to1840establish such criteria unless approved by the Board in a rulemaking or adjusted1841standard proceeding under pursuant to1842applicability of the Subpart F procedures may not be challenged in any proceeding

1843		brought under pursuant to Title VIII or X of the Act, although the validity and
1844		correctness of application of the numeric criteria derived under pursuant to
1845		Subpart F may be challenged in the proceedings under-pursuant to subsection (f).
1846		
1847	f)	Agency derived criteria may be challenged as follows:
1848	,	
1849		1) A permittee may challenge the validity and correctness of application of a
1850		criterion derived by the Agency under pursuant to this Section only at the
1851		time the criterion is first applied in an NPDES permit under-pursuant to 35
1852		Ill. Adm. Code 309.152 or in an action under pursuant to Title VIII of the
1853		Act for violation of the toxicity water quality standard. Failure of a person
1854		to challenge the validity of a criterion at the time of its first application
1855		constitutes-shall constitute a waiver of the challenge in any subsequent
1856		proceeding involving application of the criterion to that person.
1857		
1858		2) Consistent with subsection $(f)(1)$, if a criterion is included as, or is used to
1859		derive, a condition of an NPDES discharge permit, a permittee may
1860		challenge the criterion in a permit appeal under <u>-pursuant to</u> Section 40 of
1861		the Act and 35 Ill. Adm. Code 309.181. In any such action, the Agency
1862		must-shall include in the record all information upon which it has relied in
1863		developing and applying the criterion, whether that information was
1864		developed by the Agency or submitted by the Petitioner. The burden of
1865		proof is shall be on the petitioner Petitioner to demonstrate that the
1866		criterion-based condition is not necessary to accomplish the purposes of
1867		subsection (f)(1) (see Section $40(a)(1)$ of the Act), but there is no
1868		presumption in favor of the general validity and correctness of the
1869		application of the criterion as reflected in the challenged condition.
1870		
1871		3) Consistent with subsection $(f)(1)$, in an action in which alleged violation
1872		of the toxicity water quality standard is based on alleged excursion of a
1873		criterion, the person bringing the action has-shall have the burdens of
1874		going forward with proof and of persuasion regarding the general validity
1875		and correctness of application of the criterion.
1876		
1877	g)	Subsections (a) through (e) do not apply to USEPA registered pesticides approved
1878		for aquatic application and applied <u>underpursuant tounder</u> the following
1879		conditions:
1880		

		POLLUTION CONTROL BOARD
		NOTICE OF PROPOSED AMENDMENTS
1881 1882		 Application must<u>shall</u> be made in strict <u>complianceaccordancecompliance</u> with label directions;
1883 1884		2) Applicator must-shall be properly certified under the provisions of the
1885 1886		Federal Insecticide, Fungicide, and Rodenticide Act (7 USCU.S.C. 135 et seq. (1972)); and
1887 1888 1889		3) Applications of aquatic pesticides must <u>comply</u> be in accordance <u>comply</u> with the laws, regulations and guidelines of all state and federal agencies
1890 1891		authorized by law to regulate, use or supervise pesticide applications.
1892 1893	(Sour	ce: Amended at 46 Ill. Reg, effective)
1894 Sectio	on 302.4	412 Total Ammonia Nitrogen
1895		
1896	a)	This Section does not apply to the South Fork of the South Branch of the Chicago
1897		River (Bubbly Creek).
1898		
1899	b)	For the Chicago Area Waterway System and the Lower Des Plaines River
1900		described in 35 Ill. Adm. Code 303.204 and listed in 35 Ill. Adm. Code 303.220
1901		through 303.240, total ammonia nitrogen must in no case exceed 15 mg/L.
1902		
1903	c)	The total ammonia nitrogen acute, chronic, and sub-chronic standards are
1904		determined in <u>complianceaccordancecompliance</u> with the equations in
1905		subsections $(c)(1)$ and $(c)(2)$. Attainment of each standard must be determined in
1906		<u>complianceaccordancecompliance</u> with subsections (d) and (e) in mg/L.
1907		
1908		1) The acute standard (AS) is calculated using the following equation:
1909		
1910		AS = -0.411 + -58.4
1911		$\frac{1+10^{7.204-\text{pH}}}{1+10^{\text{pH}-7.204}}$
1912		$AS = \frac{0.411}{1 + 10^{7.204 - pH}} + \frac{58.4}{1 + 10^{pH - 7.204}}$
1913		
1914		2) The chronic standard (CS) is calculated using the following equations:
1915		
1916		A) During the Early Life Stage Present period, as defined in
1917		subsection (f):

	ILLINOIS REGISTER	1 st Notice	JCAR350302-2207052r01
		POLI	LUTION CONTROL BOARD
Ι		NOTICE (OF PROPOSED AMENDMENTS
1	918 919 920	i)	When water temperature is less than or equal to 14.51 °C: $CS = \left\{ \frac{0.0577}{1 + 10^{7.688-pH}} + \frac{2.487}{1 + 10^{pH-7.688}} \right\} (2.85)$
1 1	921 922 923 924	ii)	When water temperature is above 14.51 °C:
1 1	925 926 927 928		$\frac{\text{CS} = \left\{\frac{0.0577}{1+10^{7.688-\text{pH}}} + \frac{2.487}{1+10^{\text{pH}-7.688}}\right\} \left(1.45*10^{0.028*(25-\text{T})}\right)}{\text{where:}}$
 	929 930 931		$T = Water Temperature, degrees Celsius$ $\underline{T} \equiv Water Temperature, degrees Celsius$
1 1	932 933 934 935	· ·	g the Early Life Stage Absent period, as defined in tion (f)- of this Section :
1	936 937	i)	When water temperature is less than or equal to 7 °C: $CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} (1.45*10^{0.504})$
1 1	938 939 940 941	ii)	When water temperature is greater than 7 °C:
1	942		$CS = \left\{ \frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}} \right\} \left(1.45*10^{0.028(25-T)} \right)$
1 1 1	943 944 945 946 947		Where: T = Water Temperature, degrees Celsius

ILL	I NOIS R	EGISTER 1 st Notice	JCAR350302-2207052r01
		POLLU	TION CONTROL BOARD
		NOTICE OF	PROPOSED AMENDMENTS
			$\underline{\underline{T}} \equiv \underline{\underline{Water Temperature, degrees Celsius}}$
1948 1949		3) The sub-chronic	standard is equal to 2.5 times the chronic standard.
1950		5) The sub-emonie	sundura is equal to 2.5 times the enforme standard.
1951 1952	d)	Attainment of the Total	Ammonia Nitrogen Water Quality Standards-
1952		1) The acute standa	rd for total ammonia nitrogen (in mg/L) must not be
1954		· · · · · · · · · · · · · · · · · · ·	time except in those waters for which the Agency has
1955			under 35 Ill. Adm. <u>Codepursuant to SectionCode</u> 302.102
1956		of this Part.	
1957			
1958			age concentration of total ammonia nitrogen (in mg/L)
1959			the chronic standard (CS) except in those waters in which
1960 1961			d under 35 Ill. Adm. <u>Codepursuant to SectionCode</u>
1901 1962			Part. Attainment of the chronic standard (CS) is mplianceaccordancecompliance with subsection (e)-of
1963			veraging at least four samples collected at weekly
1964		•	her sampling intervals that statistically represent a 30-day
1965			The samples must be collected in a manner that assures
1966			sampling period.
1967		-	
1968		· · · ·	ge concentration of total ammonia nitrogen (in mg/L)
1969			the sub-chronic standard-is except in those waters in
1970			allowed under 35 Ill. Adm. <u>Codepursuant to SectionCode</u>
1971			Part. Attainment of the sub-chronic standard is
1972 1973			mpliance accordance compliance with subsection (e) by
1973 1974			sample results collected over a period of four consecutive 30-day averaging period. The samples must be collected
1975		•	assures a representative sampling period.
1976			ussures a representative sampning period.
1977	e)	The water quality standa	and for each water body must be calculated based on the
1978	,	1 1	he water body measured at the time of each ammonia
1979			ion of total ammonia in each sample must be divided by
1980		-	lity standard for the sample to determine a quotient. The
1981			attained if the mean of the sample quotients is less than
1982		or equal to one for the d	uration of the averaging period.
1983			

1984 1985 1986 1987	f)	The Early Life Stage Present period occurs from March through October. All other periods are subject to the Early Life Stage Absent period, except that waters listed in 35 Ill. Adm. Code 303.240 are not subject to Early Life Stage Present ammonia limits at any time.
1988		•
1989	BOA	RD NOTE: Acute and chronic standard concentrations for total ammonia nitrogen
1990		g/L) for different combinations of pH and temperature are shown in Appendix \tilde{C} .
1991	× ·	
1992	(Sour	rce: Amended at 46 Ill. Reg, effective)
1993		
1994	SUE	3PART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS
1995		
	on 302.	501 Scope, Applicability, and Definitions
1997		
1998	a)	Subpart E contains the Lake Michigan Basin water quality standards. These must
1999	,	be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm.
2000		Code 303.443.
2001		
2002	b)	In addition to the definitions provided at 35 Ill. Adm. Code 301.200 through
2003	,	301.444, and in place of conflicting definitions at 35 Ill. Adm. <u>CodeSectionCode</u>
2004		302.100, the following terms have the meanings specified for the Lake Michigan
2005		Basin:
2006	<u> 1166</u>	
2007	_	
2008		"Acceptable daily exposure" ²² or ""ADE" ²² means an estimate of the
2009		maximum daily dose of a substance that is not expected to result in
2010		adverse noncancer effects to the general human population, including
2011		sensitive subgroups.
2012		
2013		""Acceptable endpoints"", for the purpose of deriving wildlife criteria
2014		derivation, means acceptable subchronic and chronic endpoints that affect
2015		reproductive or developmental success, organismal viability or growth, or
2016		any other endpoint that is, or is directly related to, parameters that
2017		influence population dynamics.
2018		
2019		
2020		""Acute to chronic ratio"" or ""ACR"" is the standard measure of the
2021		acute toxicity of a material divided by an appropriate measure of the

2022	chronic toxicity of the same material under comparable conditions.
2023	
2024	""Acute toxicity"" means adverse effects that result from an exposure
2025	period that is a small portion of the life span of the organism.
2026	
2027	""Adverse effect"" means any deleterious effect to organisms due to
2028	exposure to a substance. This includes effects that are or may become
2029	debilitating, harmful or toxic to the normal functions of the organism, but
2030	does not include non-harmful effects such as tissue discoloration alone or
2031	the induction of enzymes involved in the metabolism of the substance.
2032	·
2033	""Baseline BAF"" for organic chemicals, means a BAF that is based on
2034	the concentration of freely dissolved chemical in the ambient water and
2035	takes into account the partitioning of the chemical within the organism; for
2036	inorganic chemicals, a BAF is based on the wet weight of the tissue.
2037	
2038	"-Baseline BCF" ²² for organic chemicals, means a BCF that is based on the
2039	concentration of freely dissolved chemical in the ambient water and takes
2040	into account the partitioning of the chemical within the organism; for
2041	inorganic chemicals, a BAF is based on the wet weight of the tissue.
2042	
2043	
2044	"-Bioaccumulative chemical of concern"" or "-BCC"" is any chemical
2045	that has the potential to cause adverse effects and that, upon entering the
2046	surface waters, by itself or as its toxic transformation product,
2047	accumulates in aquatic organisms by a human health bioaccumulation
2048	factor greater than 1,000, after considering metabolism and other
2049	physiochemical properties that might enhance or inhibit bioaccumulation,
2050	in <u>complianceaccordancecompliance</u> with the methodology in 35 Ill. Adm.
2051	<u>CodeSectionCode</u> 302.570. In addition, the half life of the chemical in the
2052	water column, sediment or biota must be greater than eight weeks. BCCs
2053	include, but are not limited to, the following substances:
2054	
2055	Chlordane
2056	
2057	4,4 ² / ₂ -DDD; p,p ² / ₂ -DDD; 4,4 ² / ₂ -TDE; p,p ² / ₂ -TDE
2058	
2059	4,4 ² ₋ DDE; p,p ² ₋ DDE

ı	2060	
I	2061	4,4 ² 'DDT; p,p ² 'DDT
	2062	D: 11.
	2063	Dieldrin
	2064	TT 11 1
	2065	Hexachlorobenzene
	2066	
	2067	Hexachlorobutadiene; Hexachloro-1,3-butadiene
	2068	
	2069	Hexachlorocyclohexanes; BHCs
	2070	the Herediterral terrary data DHC
	2071	alpha-Hexachlorocyclohexane; alpha-BHC
	2072	hata Hawashlawawalahawawayhata DUC
	2073	beta- Hexachlorocyclohexane; beta-BHC
	2074	delte Henerhlere evelek evenes delte DHC
	2075	delta- Hexachlorocyclohexane; delta-BHC
	2076 2077	Lindona, commo Havashlaraayalahayana, commo DUC
	2078	Lindane; gamma- Hexachlorocyclohexane; gamma-BHC
	2078	Moroury
	2080	Mercury
	2080	Mirex
	2082	Whitex
	2082	Octachlorostyrene
	2084	octacinorostyrene
	2085	PCBs; polychlorinated biphenyls
	2086	r chs, poryemornated orphenyis
	2087	Pentachlorobenzene
	2088	
	2089	Photomirex
	2090	
	2091	2,3,7,8-TCDD; Dioxin
	2092	
	2093	1,2,3,4-Tetrachlorobenzene
	2094	
	2095	1,2,4,5-Tetrachlorobenzene
	2096	
	2097	Toxaphene
		-

NOTICE OF PROPOSED AMENDMENTS

2098 2099 ""Bioaccumulation"" is the net accumulation of a substance by an 2100 organism as a result of uptake from all environmental sources. 2101 ""Bioaccumulation factor"" or ""BAF"" is the ratio (in L/kg) of a 2102 2103 substance's concentration in the tissue of an aquatic organism to its 2104 concentration in the ambient water, in situations where both the organism 2105 and its food are exposed and the ratio does not change substantially over 2106 time. 2107 ""Bioconcentration"²² means the net accumulation of a substance by an 2108 2109 aquatic organism as a result of uptake directly from the ambient water 2110 through gill membranes or other external body surfaces. 2111 2112 2113 ""Bioconcentration Factor"" or ""BCF"" is the ratio (in L/kg) of a 2114 substance²'s concentration in the tissue of an aquatic organism to its 2115 concentration in the ambient water, in situations where the organism is 2116 exposed through the water only and the ratio does not change substantially 2117 over time. 2118 2119 2120 ""Biota-sediment accumulation factor"" or ""BSAF"" means the ratio (in kg of organic carbon/kg of lipid) of a substance²'s lipid-normalized 2121 concentration in the tissue of an aquatic organism to its organic 2122 2123 carbon-normalized concentration in surface sediment, in situations where 2124 the ratio does not change substantially over time, both the organism and its 2125 food are exposed, and the surface sediment is representative of average 2126 surface sediment in the vicinity of the organism. 2127 2128 ""Carcinogen"" means a substance that causes an increased incidence of 2129 benign or malignant neoplasms, or substantially decreases the time to 2130 develop neoplasms, in animals or humans. The classification of 2131 carcinogens is determined by the procedures in Section II.A of Appendix C to 40 CFR 132, (1996) incorporated by reference in 35 Ill. Adm. Code 2132 2133 301.106. Section 302.510. 2134 2135

NOTICE OF PROPOSED AMENDMENTS

2136 ""Chronic effect"² means an adverse effect that is measured by assessing an acceptable endpoint, and results from continual exposure over several 2137 2138 generations, or at least over a significant part of the test species' projected 2139 life span or life stage. 2140 2141 ""Chronic toxicity"² means adverse effects that result from an exposure period that is a large portion of the life span of the organism. 2142 2143 2144 ""Dissolved organic carbon"" or ""DOC"" means organic carbon that 2145 2146 passes through a 1 umum pore size filter. 2147 2148 "Dissolved metal"²² means the concentration of a metal that will pass 2149 through a 0.45 umum pore size filter. 2150 2151 ""Food chain"²² means the energy stored by plants is passed along through 2152 the ecosystem through trophic levels in a series of steps of eating and 2153 being eaten, also known as a food web. 2154 ""Food chain multiplier"" or ""FCM"" means the ratio of a BAF to an 2155 2156 appropriate BCF. 2157 ""Linearized multi-stage model"" means a mathematical model for cancer 2158 2159 risk assessment. This model fits linear dose-response curves to low doses. 2160 It is consistent with a no-threshold model of carcinogenesis. 2161 2162 ""Lowest observed adverse effect level"" or ""LOAEL"" means the lowest 2163 tested dose or concentration of a substance that results in an observed 2164 2165 adverse effect in exposed test organisms when all higher doses or concentrations result in the same or more severe effects. 2166 2167 2168 ""No observed adverse effect level"" or ""NOAEL"" means the highest tested dose or concentration of a substance that results in no observed 2169 2170 adverse effect in exposed test organisms where higher doses or 2171 concentrations result in an adverse effect. 2172 ""Octanol water partition coefficient"" or ""Kow"" is the ratio of the 2173

NOTICE OF PROPOSED AMENDMENTS

2174 concentration of a substance in the n-octanol phase to its concentration in the aqueous phase in an equilibrated two-phase octanol water system. For 2175 2176 log Kow, the log of the octanol water partition coefficient is a base 10 logarithm. 2177 2178 2179 ""Open Waters of Lake Michigan"" means all of the waters within Lake Michigan in Illinois jurisdiction lakeward from a line drawn across the 2180 2181 mouth of tributaries to Lake Michigan, but not including waters enclosed 2182 by constructed breakwaters. 2183 ""Particulate organic carbon"" or ""POC"" means organic carbon that is 2184 2185 retained by a 1 umum pore size filter. 2186 ""Relative source contribution"" or ""RSC"" means the percent of total 2187 exposure that can be attributed to surface water through water intake and 2188 2189 fish consumption. 2190 2191 ""Resident or indigenous species"" means species that currently live a 2192 substantial portion of their life cycle, or reproduce, in a given body of water, or that are native species whose historical range includes a given 2193 2194 body of water. 2195 2196 ""Risk associated dose"" or "RAD"" means a dose of a known or 2197 presumed carcinogenic substance in mg/kg/day which, over a lifetime of exposure, is estimated to be associated with a plausible upper bound 2198 2199 incremental cancer risk equal to one in 100,000. 2200 2201 ""Slope factor"" or "" q_1 "" is the incremental rate of cancer development calculated through use of a linearized multistage model or other 2202 2203 appropriate model. It is expressed in mg/kg/day of exposure to the 2204 chemical in question. 2205 2206 ""Standard Methods" means "Standard Methods for the Examination of Water and Wastewater", available from the American Public Health 2207 2208 Association. 2209 2210 ""Subchronic effect"" means an adverse effect, measured by assessing an acceptable endpoint, resulting from continual exposure for a period of 2211

2212	time less than that deemed necessary for a chronic test.
2213	
2214	""Target species"" is a species to be protected by the criterion.
2215	""Torrat gracies value"" is the criterion value for the torrat gracies
2216	""Target species value"" is the criterion value for the target species.
2217	""Test species"" is a species that has test data available to derive a
2219	criterion.
2220	enterion.
2220	""Test dose"" or ""TD"" is a LOAEL or NOAEL for the test species.
2222	
2223	""Tier I criteria"" are numeric values derived by use of the Tier I
2224	methodologies that either have been adopted as numeric criteria into a
2225	water quality standard or are used to implement narrative water quality
2226	criteria.
2227	
2228	""Tier II values"" are numeric values derived by use of the Tier II
2229	methodologies that are used to implement narrative water quality criteria.
2230	They are applied as criteria, have the same effect, and subject to the same
2231	appeal rights as criteria.
2232	
2233	""Trophic level"" means a functional classification of taxa within a
2234	community that is based on feeding relationships. For example, aquatic
2235 2236	green plants and herbivores comprise the first and second trophic levels in a food chain.
2230	
2238	""Toxic unit acute"" or ""TU _a TU _a "" is the reciprocal of the effluent
2239	concentration that causes 50 percent of the test organisms to die by the end
2240	of the acute exposure period, which is 48 hours for invertebrates and 96
2241	hours for vertebrates.
2242	
2243	""Toxic unit chronic"" or ""TUeTUe" is the reciprocal of the effluent
2244	concentration that causes no observable effect on the test organisms by the
2245	end of the chronic exposure period, which is at least seven days for
2246	Ceriodaphnia, fathead minnow and rainbow trout.
2247	
2248	
2249	""Uncertainty factor"" or ""UF"" is one of several numeric factors used in

ILLINOIS REGISTER	st	N	0	ti	ce_	
					_	-

POLLUTION CONTROL BOARD
NOTICE OF PROPOSED AMENDMENTS
2250deriving criteria from experimental data to account for the quality or2251quantity of the available data.
 2252 2253 "<u>"USEPA"</u> means United States Environmental Protection Agency. 2254
2255 (Source: Amended at 46 Ill. Reg, effective) 2256
2257Section 302.502 Dissolved Oxygen
2258
2259Dissolved oxygen (STORET number 00300) must not be less than 90% of saturation, except due 2260to natural causes, in the Open Waters of Lake Michigan as defined at 35 Ill. Adm. 2261CodeSectionCode 302.501. The other waters of the Lake Michigan Basin must not be less than 22626.0 mg/L during at least 16 hours of any 24 hour period, nor less than 5.0 mg/L at any time.
2264 (Source: Amended at 46 Ill. Reg, effective) 2265
2265 2266 Section 302.503 pH
2260 Section 302.305 pm 2267
2268pH (STORET number 00400) must be within the range of 7.0 to 9.0, except for natural causes, in 2260the Open Waters of Lake Michigan as defined at 25 III. Adm. CodeSectionCode 202 501. Other
2269the Open Waters of Lake Michigan as defined at 35 Ill. Adm. <u>CodeSectionCode</u> 302.501. Other 2270waters of the Basin must be within the range of 6.5 to 9.0, except for natural causes. 2271
2272 (Source: Amended at 46 Ill. Reg, effective) 2273
2274Section 302.504 Chemical Constituents
2275
2276The following concentrations of chemical constituents must not be exceeded, except as provided
2277in 35 Ill. Adm. <u>CodeSectionsCode</u> 302.102 and 302.530:
2278
2279 a) The following standards must be met in all waters of the Lake Michigan Basin.
Acute aquatic life standards (AS) must not be exceeded at any time except for
2281 those waters for which the Agency has approved a zone of initial dilution (ZID)
under 35 Ill. Adm. <u>Codepursuant to SectionsCode</u> 302.102 and 302.530. Chronic
2283 aquatic life standards (CS) and human health standards (HHS) must not be
2284 exceeded outside of waters in which mixing is allowed under 35 Ill. Adm.
2285 <u>Codepursuant to SectionsCode</u> 302.102 and 302.530 by the arithmetic average of
2286 at least four consecutive samples collected over a period of at least four days. The
samples used to demonstrate compliance with the CS or HHS must be collected in

2288

2289

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

a manner which assures an average representation of the sampling period.

Constituent	<u>Unit</u>	AS	<u>CS</u>	<u>HHS</u>
Arsenic (Trivalent, dissolved)	μg/L	340×1.0* = 340	840×1.0* = 148 148 x 1.0* = 148	NA
Boron (total)	mg/L	40.1	7.6	NA
Cadmium (dissolved)	μg/L	$\exp[A + B \ln(H)] \times$ {1.138672 - [(ln H) $\exp[A + B \ln(H)] \times$ {1.138672 - [(ln H)]	$\exp[A + B \ln(H)] \times$ $\{1.101672 - [(\ln H)] \times$ $\exp[A + B \ln(H)] \times$ $(1.101672 - [(\ln H)] \times$	NA
		(0.041838)]}*	$\{1.101672 - [(1nH)], (0.041838)]\}$ *	
		where $A = -3.6867$ and $B = 1.128$	where $A = -2.715$ and $B = 0.7852$	
Chromium (Hexavalent, total)	μg/L	16	11	NA
Chromium (Trivalent, dissolved)	μg/L	$\frac{\exp[A+B\ln(H)]\times}{\exp[A+B\ln(H)]\times}$ 0.316*	$\exp[A + B \ln(H)] \times$ $\exp[A + B \ln(H)] \times$ $0.860*$	NA
		where $A = 3.7256$ and $B = 0.819$	where $A = 0.6848$ and $B = 0.819$	
Copper (dissolved)	μg/L	$\frac{\exp[A + B\ln(H)] \times}{\exp[A + B\ln(H)] \times}$ $0.960*$	$\frac{\exp[A + B \ln(H)] \times}{\exp[A + B \ln(H)] \times}$ $0.960*$	NA
		where $A = -1.700$ and $B = 0.9422$	where $A = -1.702$ and $B = 0.8545$	
Cyanide**	μg/L	22	5.2	NA
Fluoride (total)	μg/L	$\exp\left[A+B\ln(H)\right]$	$\exp[A+B\ln(H)]$	NA

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

		exp[A + Bln(H)] where $A = 6.7319$ and $B = 0.5394$	exp[A+B1n(H]], but mustshall <u>must</u> not exceed 4.0 mg/L	
			where $A = 6.0445$ and $B = 0.5394$	
Lead (dissolved)	µg/L	$\exp[A + B \ln(H)] \times$ (1.46203 - [(ln H)) $\exp[A + B \ln(H)] \times$ (1.46203 - [(lnH)) (0.145712)]	$\exp[A + B \ln(H)] \times (1.46203 - [(\ln H)] \times (1.46203 - [(\ln H)]) \times (1.46203 - [(1nH)]) \times (0.145712)] $	NA
		where $A = -1.055$ and $B = 1.273$	where $A = -4.003$ and $B = 1.273$	
Manganese (dissolved)	μg/L	$\exp[A + B \ln(H)] \times$ 0.9812 * $\exp[A + B \ln(H)] \times$ 0.9812 *	$\exp[A + B \ln(H)] \times$ 0.9812 * $\exp[A + B \ln(H)] \times$ 0.9812 *	NA
		where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Nickel (dissolved)	µg/L	$\frac{\exp[A + B\ln(H)] \times}{\exp[A + B\ln(H)] \times}$ $0.998*$	$\exp[A + B \ln(H)] \times \exp[A + B \ln(H)] \times 0.997*$	NA
		where $A = 2.255$ and $B = 0.846$	where $A = 0.0584$ and $B = 0.846$	
Selenium (dissolved)	μg/L	NA	5.0	NA
TRC	μg/L	19	11	NA
Zinc (dissolved)	μg/L	$\exp[A + B\ln(H)] \times \exp[A + B\ln(H)] \times$	$\exp[A + B\ln(H)] \times \exp[A + B\ln(H)] \times$	NA

NOTICE OF PROPOSED AMENDMENTS

		0.978*	0.986*	
		where $A = 0.884$ and $B = 0.8473$	where $A = 0.884$ and $B = 0.8473$	
Benzene	μg/L	3900	800	310
Chlorobenzene	mg/L	NA	NA	3.2
2.4-Dimethylphenol	mg/L	NA	NA	8.7
2,4-Dinitrophenol	mg/L	NA	NA	2.8
Endrin	μg/L	0.086	0.036	NA
Ethylbenzene	μg/L	150	14	NA
Hexachloroethane	μg/L	NA	NA	6.7
Methylene chloride	mg/L	NA	NA	2.6
Parathion	μg/L	0.065	0.013	NA
Pentachlorophenol	μg/L	$\exp B([pH] + A)$	$\exp B([pH] + A)$	NA
		where $A = -4.869$ and $B = 1.005$	where $A = -5.134$ and $B = 1.005$	
Toluene	μg/L	2000	610	51.0
Trichloroethylene	μg/L	NA	NA	370
Xylene(s)	μg/L	1200	490	NA

2290

where:

NA	=	Not Applied
exp[x]	=	base of natural logarithms raised to the x-power
ln(H)	=	natural logarithm of Hardness in mg/L as CaCO ₃
*	=	conversion factor multiplier for dissolved metals

NOTICE OF PROPOSED AMENDMENTS

** = standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106<u>302.510</u>: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3).

b) The following water quality standards must not be exceeded at any time in any waters of the Lake Michigan Basin, unless a different standard is specified under subsection (c) of this Section.

Constituent		Unit	Water Quality Standard
Barium (total)	01007	mg/L	5.0
Chloride (total)		mg/L	500
Iron (dissolved)		mg/L	1.0
Phenols		mg/L	0.1
Sulfate		mg/L	500
Total Dissolved Solids		mg/L	1000

c) In addition to the standards specified in subsections (a) and (b)-of this Section, the following standards must not be exceeded at any time in the Open Waters of Lake Michigan as defined in Section 302.501.

Constituent	Unit	Water Quality Standard
Arsenic (total)	μg/L	50.0

NOTICE OF PROPOSED AMENDMENTS

Boron (total)	mg/L	1.0
Barium (total)	mg/L	1.0
Chloride (total)	mg/L	12.0
Fluoride (total)	mg/L	1.4
Iron (dissolved)	mg/L	0.30
Lead (total)	μg/L	50.0
Manganese (total)	mg/L	0.15
Nitrate-Nitrogen	mg/L	10.0
Phosphorus	µg/L	7.0
Selenium (total)	µg/L	10.0
Sulfate	mg/L	24.0
Total Dissolved Solids	mg/L	180.0
Oil (hexane solubles or equivalent)	mg/L	0.10
Phenols	µg/L	1.0

2308 2309 d) In addition to the standards specified in subsections (a), (b) and (c) of this Section, the following human health standards (HHS) must not be exceeded in the Open Waters of Lake Michigan as defined in Section 302.501 by the arithmetic average of at least four consecutive samples collected over a period of at least four days. The samples used to demonstrate compliance with the HHS must be collected in a manner which assures an average representation of the sampling period.

Constituent	<u>Unit</u>	Water Quality Standard
Benzene	µg/L	12.0
Chlorobenzene	μg/L	470.0

NOTICE OF PROPOSED AMENDMENTS

2,4-Dimethylphenol	µg/L	450.0
2,4-Dinitrophenol	µg/L	55.0
Hexachloroethane (total)	μg/L	5.30
Lindane	µg/L	0.47
Methylene chloride	μg/L	47.0
Trichloroethylene	μg/L	29.0

2310

2311 For the following bioaccumulative chemicals of concern (BCCs), acute aquatic e) life standards (AS) must not be exceeded at any time in any waters of the Lake 2312 Michigan Basin and chronic aquatic life standards (CS), human health standards 2313 2314 (HHS), and wildlife standards (WS) must not be exceeded in any waters of the Lake Michigan Basin by the arithmetic average of at least four consecutive 2315 samples collected over a period of at least four days subject to the limitations of 2316 2317 35 Ill. Adm. CodeSectionsCode 302.520 and 302.530. The samples used to demonstrate compliance with the HHS and WS must be collected in a manner that 2318 2319 assures an average representation of the sampling period. 2320

Constituent	<u>Unit</u>	<u>AS</u>	<u>CS</u>	<u>HHS</u>	<u>WS</u>
Mercury (total)	ng/L	1,700	910	3.1	1.3
Chlordane	ng/L	NA	NA	0.25	NA
DDT and metabolites	pg/L	NA	NA	150	11.0
Dieldrin	ng/L	240	56	0.0065	NA
Hexachlorobenzene	ng/L	NA	NA	0.45	NA
Lindane	µg/L	0.95	NA	0.5	NA
PCBs (class)	pg/L	NA	NA	26	120
2,3,7,8-TCDD	fg/L	NA	NA	8.6	3.1
Toxaphene	pg/L	NA	NA	68	NA

2321
where:
mg/L = milligrams per liter (10-3 grams per liter)
$\mu g/L$ = micrograms per liter (10 ⁻⁶ grams per liter)
ng/L = nanograms per liter (10 ⁻⁹ grams per liter)
$pg/L = picograms per liter (10^{-12} grams per liter)$
fg/L = femtograms per liter (10 ⁻¹⁵ grams per liter)
NA = Not Applied
2322
2323 (Source: Amended at 46 Ill. Reg, effective)
2324
2325Section 302.505 Fecal Coliform
2326
2327Based on a minimum of five samples taken over not more than a 30-day period, fecal coliform
2328(STORET number 31616) must not exceed a geometric mean of 20 per 100 ml in the Open
2329Waters of Lake Michigan as defined in 35 Ill. Adm. <u>CodeSectionCode</u> 302.501. The remaining
2330waters of the Lake Michigan Basin must not exceed a geometric mean of 200 per 100 ml, nor 2331shall more than 10% of the samples during any 30 day period exceed 400 per 100 ml.
2331 shan more than 10% of the samples during any 50 day period exceed 400 per 100 m.
2332 (Source: Amended at 46 Ill. Reg, effective)
2334 (Source: Amended at 40 m. Reg, encenve)
2335Section 302.506 Temperature
2336
a) STORET numbers for temperature are (°F) 00011 and (°C) 00010.
2338
2339 a]b) The owner or operator of a source of heated effluent <u>mustshallmust</u> maintain such
2340 records and conduct such studies of the effluents from the source and itself
2341 their its effects as may be required by the Agency or in any permit granted under
the Act.
2343
2344 bje) Backfitting of alternative cooling facilities will be required if, upon complaint
2345 filed in <u>complianceaccordance compliance</u> with Board rules, it is found at any time
that any heated effluent causes significant ecological damage to the Lake.
2347

ILLINOIS REGISTER 1st Notice_

JCAR350302-2207052r01

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

2348 2349	(Sour	ce: Ame	ended at	46 Ill. Re	g, e	effective)		
	n 302.5	507 The	rmal St	andards f	for Existing	Sources	on Januar	v 1. 1971		
2350 Section 2351	n 002.0	or inc		unuunus i	UT L'AISTING	Sources	on oanuar.	, 1, 1771		
	urces of	^c heated e	effluents	in exister	nce as of Jar	mary 1. 19	971. mustsk	ull must m	eet the	
									than a circle	
					equal fixed			io greater		
2355 100 au	Tuurub	01 505 11	(10001		equal intea	urea 01 51				
2356	a)	There n	nust <u>sha</u>	11 be no al	normal tem	nerature o	changes that	t may affe	ct aquatic life	
2357	u)	1 nere n				iperature	changes tha	t may arro	et aquatie inv	
2358	b)	The not	rmal dai	ly and sea	sonal tempe	rature flu	ctuations th	at existed	before the	
2359	0)				H be mainta			at existed	before the	
2360		additio	ii oi nea	t must <mark>-sna</mark>	H OC Mainta	meu.				
2361	c)	The ma	vimum	temneratu	ire rise at an	v time ah	ove natural	temneratu	res must _shal	1
2362	0)								ure must sha	
2363					limits indic				ure must sna	11
2364		not exe		maximum	i iiiiitis iiidik		c tonowing	, table.		
2365				° C°C	<u> </u>		<u>•-C</u> +C-	<u>∘ F</u> ₀ <u>F</u>		
2365			JAN.		$-\frac{1}{45}$					
2367			FEB.	7	45 			<u>80</u>		
				7			27			
2369							<u> </u>	<u>65</u>		
2370			-MAY	-	<u> </u>	<u>- NOV.</u>				
2370			JUN.	21		- DEC.		<u>50</u>		
2371			.	21	70	DLC.	10	-50		
2372				° C	° F			° C	° F	
							-			
		JAN.		<u>7</u>	<u>45</u>		JUL.	<u>27</u>	<u>80</u>	
		FEB.		7	$\frac{45}{45}$ $\frac{45}{55}$		AUG.	$\frac{\underline{27}}{\underline{27}}$ $\frac{\underline{27}}{\underline{18}}$	<u>80</u>	
		MAR.		7	<u>45</u>		SEPT.	27	80	
		APR.		<u>13</u>	55		OCT.	18	<u>65</u>	
		MAY		$\frac{\frac{7}{7}}{\frac{7}{2}}$	<u>60</u>		NOV.	16	<u>60</u>	
		JUN.		21	70		DEC.	10	<u>50</u>	
2373										
2374	(Sourc	e: Amer	nded at 4	46 Ill. Reg	g, e	ffective		_)		
2375										

2376Section 302.508 Thermal Standards for Sources Under Construction But Not In Operation 2377on January 1, 1971

ILLINOIS REGISTER 1 Motice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

2378

	2379Anv ef	fluent s	ource under construction but not in operation on January 1, 1971 must meet all the
I			of 35 Ill. Adm. CodeSectionCode 302.507 and in addition must meet the following
I	2381restrict		
	2382		
I	2383	a)	The-Neither the bottom, the shore, the hypolimnion, and nor the thermocline must
	2384)	not shall be affected by any heated effluent.
•	2385		
	2386	b)	Heated No heated effluent must not-shall affect spawning grounds or fish
•	2387	,	migration routes.
	2388		
	2389	c)	Discharge structures must-shall be-so designed as-to maximize short-term mixing
•	2390		and thus to reduce the area significantly raised in temperature.
	2391		
	2392	d)	Discharge-No discharge must not-shall exceed ambient temperatures by more than
	2393		11 °C (20 °F) 11°C (20°F) .
	2394		
	2395	e)	Heated effluents from more than one source must-shall not interact.
	2396		
	2397	f)	All reasonable steps must-shall be taken to reduce the number of organisms drawn
	2398		into or against the intakes.
	2399		
	2400	(Sourc	e: Amended at 46 Ill. Reg, effective)
	2401		
		n 302.5	09 Other Sources
ī	2403	``	
	2404	a)	A <u>No</u> source of heated effluent which was not in operation or under construction
I	2405		as of January 1, 1971, must not shall discharge more than a daily average of 29
	2406		megawatts (0.1 billion British thermal units per hour).
	2407	1)	
I	2408	b)	Sources of heated effluents which discharge less than a daily average of 29
	2409		megawatts (0.1 billion British Thermal Units thermal units per hour) not in
	2410		operation or under construction as of January 1, 1971, must <u>shall</u> meet all
I	2411 2412		requirements of 35 Ill. Adm. <u>CodesectionsCode</u> 302.507 and 302.508.
I	2412 2413	(Source	a: Amondod at 46 III Pag affective
I	2413 2414	(Sourc	e: Amended at 46 Ill. Reg, effective)
		n 302 5	10 Incorporations by Reference (Repealed)
	241350010	n 302.3	iv incorporations by Reference (Repealed)

2416	
2417	a) The Board incorporates the following publications by reference:
2418	
2419	American Public Health Association et al., Standard Methods for the
2420	Examination of Water and Wastewater, 21st Edition, 2005. Available
2421	from the American Public Health Association, 800 I Street, NW,
2422	Washington, D.C. 20001-3710, (202)777-2742.
2423	
2424	USEPA. United States Environmental Protection Agency, Office of Health
2425	and Environmental Assessment, Washington, D.C. 20460, Method
2426	OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange,
2427	and Amperometry, January 2004, Document Number EPA-821-R-04-001.
2428	
2429	b) The Board incorporates the following federal regulations by reference. Available
2430	from the Superintendent of Documents, U.S. Government Printing Office,
2431	Washington, D.C. 20402, (202) 783-3238:
2432	
2433	<u></u>
2434	
2435	<u> </u>
2436	
2437	
2438	
2439	The Sections of 40 CFR 132 (1996) listed below:
2440	
2441	Appendix A
_ 2442	
2443	Section I A
2444	
2445	Section II
2446	
2447	Section III C
2448	
2449	Section IV D, E, F, G, H, and I
2450	
2451	Section V-C
_ 2452	
2453	Section VI A, B, C, D, E, and F

NOTICE OF PROPOSED AMENDMENTS

	2454	
	2455	Section VIII
	2456	
	2457	Section XI
	2458	
	2459	Section XVII
	2460	
	2461	Appendix B
	2462	
	2463	Section III
	2464	
	2465	Section VII B and C
	2466	
I	2467	Section VIII
	2468	
I	2469	Appendix C
ī	2470	
I	2471	Section II
ī	2472	
I	2473	Section III A (1 through 6 and 8), B (1 and 2)
ī	2474	
I	2475	Appendix D
ī	2476	Section III C. D. on I.E.
I	2477	Section III C, D, and E
ī	2478	Section IV
I	2479 2480	Section IV
I	2480	c) This Section incorporates no future editions or amendments.
I	2481	c) This section memporales no rutare cutions of amendments.
I	2482	(Source: Repealed at 46 Ill. Reg, effective)
I	2484	
		n 302.515 Offensive Conditions
	2486	

2487Waters of the Lake Michigan Basin must be free from sludge or bottom deposits, floating debris, 2488visible oil, odor, plant or algal growth, color or turbidity of other than natural origin. The 2489allowed mixing provisions of 35 Ill. Adm. <u>CodeSectionCode</u> 302.102 must <u>shall</u>not be used to 2490comply with the provisions of this Section. 2491

ILLINOIS REGISTER 1 St N	loti	ce_
--------------------------	------	-----

2492 2493	(Sourc	e: Am	ended at	t 46 Ill. Reg, effective)
	n 302.5	20 Reg	gulation	and Designation of Bioaccumulative Chemicals of Concern
2495(BCC				
2496	.)			
2497	a)	For th	e nurnos	ses of regulating BCCs in complianceaccordancecompliance with 35
2498	u)			eSectionsCode 302.521 and 302.530 of this Part, the following
2499				st shall be considered as BCCs:
2500		enenn	cuis illu	
2500		1)	any ch	emical or class of chemicals listed as a BCC in 35 Ill. Adm.
2502		1)	•	ectionCode 302.501; and
2502			<u>couc</u> 5	502.501, and
2503		2)	any ch	emical or class of chemicals that the Agency has determined meets
2505		2)	•	aracteristics of a BCC as defined in 35 Ill. Adm. CodeSectionCode
2506				1) as indicated by:
2507			502.50	i us indicated by:
2508			A)	publication in the Illinois Register; or
2509			11)	puoliounion in the minious register, or
2510			B)	notification to a permittee or applicant; or
2510			D)	nounceuton to a permittee of approach, of
2512			C)	filing a petition with the Board to verify that the chemical must
2512			0)	shall be designated a BCC.
2514				
2515	b)	Notwi	thstandi	ng subsections (a)(2)(A) and (B)-of this Section, a chemical must
2516	-)			gulated as a BCC if the Agency has not filed a petition, within 60
2517				h publication or notification, with the Board in
2518		•		cordance compliance with Section 28.2 of the Act to verify that the
2519				t shall be designated a BCC.
2520				6
2521	c)	Under	Pursua	nt to subsection (b) of this Section and 35 Ill. Adm.
2522	,			Code 302.570 of this Part, if the Board verifies that a chemical has a
2523				bioaccumulation factor greater than 1,000 and is consistent with the
2524				BCC in 35 Ill. Adm. Code 302.501 Section 302.105, the Board
2525				signate the chemical as a BCC and list the chemical in 35 Ill. Adm.
2526				Code 302.501. If the Board fails to verify the chemical as a BCC in
2527				on the verification petition, the chemical must hallmust not be
2528				C and must shall must not be regulated as a BCC in
2529				cordance compliance with 35 Ill. Adm. CodeSectionsCode 302.521

ILLINOIS REGISTER	st	Ν	ot	ice	
					_

	POLLUTION CONTROL BOARD							
NOTICE OF PROPOSED AMENDMENTS								
2530		and 30	2.530 -0	f this Part .				
2531	(9							
2532	(Sourc	e: Ame	ended at	46 Ill. Reg, effective)				
2533								
	n 302.5	21 Sup	plemen	tal Antidegradation Provisions for BCCs				
2535	`		1 / 1					
2536	a)			ng the provisions of 35 Ill. Adm. <u>CodeSectionCode</u> 302.105, waters				
2537				e Michigan Basin must not be lowered in quality due to new or				
2538				ing of substances defined as bioaccumulative chemicals of concern				
2539				Ill. Adm. <u>CodeSectionCode</u> 302.501 from any source or activity				
2540				NPDES permitting, Section 401 water quality certification				
2541				he Clean Water Act (P.L. 92-100, as amended), or joint permits				
2542			-	cy and the Illinois Department of Natural Resources under Section at [415 II CS $5/20(x)$] until and unlarge it can be effermatively				
2543				ct [415 ILCS 5/39(n)] until and unless it can be affirmatively				
2544				that such change is necessary to accommodate important economic				
2545		or soci	al devel	opment.				
2546		1)	W/le erre	ambient concentrations of a DCC and equal to an exceed on				
2547		1)		ambient concentrations of a BCC are equal to or exceed an				
2548				ble water quality criterion, no increase in loading of that BCC is				
2549			allowe	u.				
2550 2551		2)	Where	ambient concentrations of a DCC are below the amplicable water				
2552		2)		ambient concentrations of a BCC are below the applicable water				
2552 2553				criterion, a demonstration to justify increased loading of that BCC nclude the following:				
2555 2554			must n	icidae the following.				
2555			A)	Dollution Provention Alternatives Analysis Identify any				
2555			A)	Pollution Prevention Alternatives Analysis. Identify any cost-effective reasonably available pollution prevention				
2557				alternatives and techniques that would eliminate or significantly				
2558				reduce the extent of increased loading of the BCC.				
2559				reduce the extent of increased loading of the BCC.				
2559			B)	Alternative or Enhanced Treatment Analysis. Identify alternative				
2561			D)	or enhanced treatment techniques that are cost effective and				
2562				reasonably available to the entity that would eliminate or				
2563				significantly reduce the extent of increased loading of the BCC.				
2564				significantly reduce the extent of increased loading of the DCC.				
2565			C)	Important Social or Economic Development Analysis. Identify the				
2566			0)	social or economic development and the benefits that would be				
2567				forgone if the increased loading of the BCC is not allowed.				

NOTICE OF PROPOSED AMENDMENTS

2568 2569 3) In no case willshallwill increased loading of BCCs result in 2570 exceedingexceedence of exceeding applicable water quality criteria or concentrations exceeding the level of water quality necessary to protect 2571 2572 existing uses. 2573 2574 4) Changes in loadings of any BCC within the existing capacity and 2575 processes of an existing NPDES authorized discharge, certified activity 2576 under pursuant to Section 401 of the Clean Water Act, or joint permits from the Agency and the Illinois Department of Natural Resources under 2577 2578 Section 39(n) of the Act are not subject to the antidegradation review of 2579 subsection (a) of this Section. These changes include but are not limited 2580 to: 2581 2582 A) normal operational variability, including, but not limited to, 2583 intermittent increased discharges due to wet weather conditions; 2584 2585 changes in intake water pollutants; B) 2586 2587 C) increasing the production hours of the facility; or 2588 2589 D) increasing the rate of production. 2590 2591 5) Any determination to allow increased loading of a BCC based onpursuant 2592 toon a demonstration of important economic or social development need 2593 must satisfy the public participation requirements of 40 CFR 25 2594 prior to final issuance of the NPDES permit, Section 401 water quality 2595 certification, or joint permits from the Agency and the Illinois Department 2596 of Natural Resources under Section 39(n) of the Act. 2597 2598 b) The following actions are not subject to the provisions of subsection (a) of this 2599 Section, unless the Agency determines the circumstances of an individual 2600 situation warrant application of those provisions to adequately protect water 2601 quality: 2602 2603 Short-term, temporary (i.e., weeks or months) lowering of water quality; 1) 2604 2605 Bypasses that are not prohibited at 40 CFR 122.41 (m), incorporated by 2)

ILLINOIS REGISTER 1st Notice

	CONTROL BOARD
TOLLOHON	CONTROL DOTIND

	2606		reference in 35 Ill. Adm. Code 301.106; or	
	2607			
	2608		3) Response actions <u>underpursuant tounder</u> the Comprehensive	
•	2609		Environmental Response, Compensation and Liability Act (CERCLA), as	3
	2610		amended, or similar federal or State authority, undertaken to alleviate a	
	2611		release into the environment of hazardous substances, pollutants or	
	2612		contaminants that pose danger to public health or welfare.	
	2613			
	2614	(Source	e: Amended at 46 Ill. Reg, effective)	
Ì	2615			
	2616Section	n 302.52	25 Radioactivity	
	2617			
	2618Except	as prov	vided in 35 Ill. Adm. <u>CodeSectionCode</u> 302.102, all waters of the Lake Michigan	
	2619Basin r	nust me	eet the following concentrations:	
	2620			
	2621	a)	Gross beta (STORET number 03501) concentrations must not exceed 100	
	2622		picocuries per liter (pCi/L).	
	2623			
	2624	<u>b)-b)</u> S	trontium 90 (STORET number 13501) concentration must shall not exceed 2	
	2625		picocuries per liter (pCi/L).	
	2626			
l	2627	c)	The annual average radium 226 and 228 (STORET number 11503) combined	
	2628		concentration must not exceed 3.75 picocuries per liter (pCi/L).	
ī	2629	(A		
I	2630	(Source	e: Amended at 46 Ill. Reg, effective)	
	2631	202 5		
			30 Supplemental Mixing Provisions for Bioaccumulative Chemicals of	
	2633 Conce	rn (BC)	US)	
ī	2634	1	Mining Mining Zanas, and ZIDs graviting Canada Descriptions of 25 III	
			Mixing, Mixing Zones, and ZIDs <u>provisions General Provisions provisions</u> of 35 Ill	•
			etion <u>Code</u> 302.102 (Allowed Mixing, Mixing Zones and ZIDs) apply within the	
			n Basin except as otherwise provided herein for substances defined as BCCs in 35 eSectionCode 302.501:	
I	2639 2639	II. Cou	<u></u>	
I	2640	a)	Mixing is notNo mixing shall benot allowed for BCCs for new discharges	
I	2641	uj	commencing on or after December 24, 1997.	
	2642		commencing on or area December 24, 1997.	
	2642	b)	Discharges of BCCs existing as of December 24, 1997 are eligible for mixing	
	2012	-,	Discharges of Deep enioding as of December 21, 1997 are englishe for mixing	

	2644 2645 2646 2647		allowance consistent with 35 Ill. Adm. <u>CodeSectionCode</u> 302.102 until March 23, 2007. After March 23, 2007 mixing for BCCs will not be allowed except as provided in subsections (c) and (d) of this Section.
	2648 2649 2650 2651 2652 2653	c)	Mixing allowance for a source in existence on December 24, 1997 may continue beyond March 23, 2007 where it can be demonstrated on a case by case basis that continuation of mixing allowance is necessary to achieve water conservation measures that result in overall reduction of BCC mass loading to the Lake Michigan Basin.
	2654 2655 2656 2657 2658 2659 2660 2661 2662	d)	Mixing allowance for a source in existence on December 24, 1997 <u>willshallwill</u> only continue if necessitated by technical and economic factors. Any mixing allowance continued beyond March 23, 2007 based on technical and economic factors <u>mustshallmust</u> be limited to not more than one NPDES permit term, and <u>mustshallmust</u> reflect the maximum achievable BCC loading reduction within the identified technical and economic considerations necessitating the exception. <u>TheSuchThe</u> continued mixing allowance <u>mustshallmust</u> not be renewed beyond that permit term unless a new determination of technical and economic necessity is made.
			e: Amended at 46 Ill. Reg, effective) 35 Ammonia Nitrogen
	2669not exc 2670the Lak 2671 2672 2673	ceed 0.0	ters of Lake Michigan as defined in 35 Ill. Adm. <u>CodeSectionCode</u> 302.501 must 2 mg/L total ammonia (as N: STORET Number 00610). The remaining waters of igan Basin <u>areshall beare</u> subject to the following: Total ammonia nitrogen (as N: STORET Number 00610) must in no case exceed 15 mg/L.
	2674 2675 2676 2677 2678 2679 2680 2681	b)	 Un-ionized ammonia nitrogen (as N: STORET Number 00612) must not exceed the acute and chronic standards given below subject to the provisions of 35 Ill. Adm. <u>CodeSectionsCode</u> 302.208(a) and (b) of this Part: 1) From April through October, the Acute Standard (AS) must<u>shall</u> be 0.33 mg/L and the chronic standard (CS) must <u>shall</u> be 0.057 mg/L.

ILLINO	IS REGISTER 1 st Notice JCAR350302-2207052r01
I	POLLUTION CONTROL BOARD
	NOTICE OF PROPOSED AMENDMENTS
2682 2683 2684	2) From November through March, the AS <u>mustshallmust</u> be 0.14 mg/L and the CS <u>mustshallmust</u> be 0.025 mg/L.
1	For purposes of this Section, the concentration of un-ionized ammonia nitrogen as N and total ammonia as N must shall be computed according to the following equations:
2689 2690 2691 2692	$\frac{U}{[0.94412(1+10^{*})+0.0559]}$
2693	$\underline{\underline{U}} \equiv \frac{\underline{\underline{N}}}{[0.94412(1+10^{\underline{x}})+0.0559]}$
2694 2695 2696	and N = U[$0.94412(1 + 10^{x}) + 0.0559$]
2697 2698	Where: $\frac{X = 0.09018 + 2729.92}{(T + 273.16)}$
2700 2701 2702	 U = Concentration of un-ionized ammonia as N in mg/L N = Concentration of ammonia nitrogen as N in mg/L T = Temperature in degrees Celsius.
2703	$\underline{X} \equiv \underline{0.09018} \pm \underline{\frac{2729.92}{(T+273.16)}} \underline{-pH}$
 	$\underline{\underline{U}} \equiv \underline{\underline{Concentration of un-ionized ammonia as N in mg/L}}$ $\underline{\underline{N}} \equiv \underline{\underline{Concentration of ammonia nitrogen as N in mg/L}}$ $\underline{\underline{T}} \equiv \underline{\underline{Temperature in degrees Celsius.}}$
2706	Source: Amended at 46 Ill. Reg, effective) 302.540 Other Toxic Substances

2708

2709Waters of the Lake Michigan Basin must be free from any substance or any combination of

2710substances in concentrations toxic or harmful to human health, or to animal, plant or aquatic life. 2711The numeric standards protective of particular uses specified for individual chemical substances

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

2712in 35	Ill. Adn	n. <u>CodeSectionCode</u> 302.504 are not subject to recalculation by this Section,
2713howev	ver, whe	ere no standard applies to the state of the
2714calcul	ated he	rein.
2715		
2716	a)	Any substance willshall will be deemed toxic or harmful to aquatic life if present
2717		in concentrations that exceed the following:
2718		
2719		1) A Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion
2720		(LMAATC) or Tier II Lake Michigan Basin Acute Aquatic Life Toxicity
2721		Value (LMAATV) derived underpursuant tounder procedures set forth in
2722		35 Ill. Adm. <u>CodeSectionsCode</u> 302.555, 302.560 or 302.563 at any time;
2723		or
2724		
2725		2) A Tier I Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion
2726		(LMCATC) or Tier II Lake Michigan Basin Chronic Aquatic Life Toxicity
2720		Value (LMCATV) derived underpursuant tounder procedures set forth in
2728		35 Ill. Adm. <u>CodeSectionCode</u> 302.565 as an average of four samples
2729		collected on four different days.
272)		concerca on rour amerent days.
2730	b)	Any combination of substances, including effluents, willshallwill be deemed toxic
2731	0)	to aquatic life if present in concentrations that exceed either subsection (b)(1) or
2732		(2) of this Section:
2733		(2) or this section.
2734 2735		1) A Ne comple of water from the Lake Michigan Design collected systeids of
2735		1) A <u>-No</u> sample of water from the Lake Michigan Basin collected outside of
		a designated zone of initial dilution must not <u>shall</u> exceed 0.3 TU _a as
2737		determined for the most sensitive species tested using acute toxicity
2738		testing methods.
2739		2) A Ma seconda of water from the Lake Mishigan Design collected extends
2740		2) A <u>No</u> sample of water from the Lake Michigan Basin collected outside a
2741		designated mixing zone must not-shall exceed 1.0 TU _c as determined for
2742		the most sensitive species tested using chronic toxicity testing methods.
2743		
2744		3) To demonstrate compliance with subsections (1) and (2) of this subsection
2745		(b), at least two resident or indigenous species <u>mustwillmust</u> be tested.
2746		The rainbow trout <u>mustwill must</u> be used to represent fishes for the Open
2747		Waters of Lake Michigan and the fathead minnow <u>mustwillmust</u> represent
2748		fishes for the other waters of the Lake Michigan Basin. Ceriodaphnia
2749		mustwillmust represent invertebrates for all waters of the Lake Michigan

2750 2751 2752 2753		Basin. Other common species <u>mayshallmay</u> be used if listed in Table I (a)A of 40 CFR 136, incorporated by reference at 35 Ill. Adm. Code 301.106 <u>Section 302.510</u> , and approved by the Agency.
2755 2754 2755 2756 2757 2758	c)	Any substance must <u>shall</u> be deemed toxic or harmful to wildlife if present in concentrations that exceed a Tier I Lake Michigan Basin Wildlife Criterion (LMWLC) derived <u>underpursuant tounder</u> procedures set forth in 35 Ill. Adm. <u>CodeSectionCode</u> 302.575 as an arithmetic average of four samples collected over four different days.
2759 2760 2761 2762 2763 2764 2765 2766	d)	For any substance that is a threat to human health through drinking water exposure only, the resulting criterion or value must <u>applyshall be applicableapply</u> to only the Open Waters of Lake Michigan. For any substance that is determined to be a BCC, the resulting criterion <u>mustshallmust</u> apply in the entire Lake Michigan Basin. These substances <u>mustshallmust</u> be deemed toxic or harmful to human health if present in concentrations that exceed either of the following:
2766 2767 2768 2769 2770 2771 2772 2773 2774		 A Tier I Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) or Tier II Lake Michigan Basin Human Health Threshold Value (LMHHTV) based on disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs as derived <u>underpursuant tounder</u> procedures set forth in 35 Ill. Adm. <u>CodeSectionCode</u> 302.585 as an arithmetic average of four samples collected over four different days; or
2775 2776 2777 2778 2779 2780 2780 2781		2) A Tier I Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or Tier II Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV) based on disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage as derived <u>underpursuant tounder</u> procedures <u>set forth</u> in 35 Ill. Adm. <u>CodeSectionCode</u> 302.590 as an arithmetic average of four samples collected over four different days.
2782 2783 2784 2785 2786	e)	The derived criteria and values apply at all points outside of any waters in which mixing is allowed under 35 Ill. Adm. <u>Codepursuant to SectionCode</u> 302.102 or <u>Section</u> 302.530.
2786 2787	f)	The procedures of this Subpart E set forth minimum data requirements,

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

appropriate test protocols and data assessment methods for establishing criteria or values underpursuant tounder subsections (b), (c), and (d) of this Section. No other procedures may be used to establish such criteria or values unless approved by the Board in a rulemaking or adjusted standards proceeding underpursuant tounder Title VII of the Act. The validity and applicability of these procedures may not be challenged in any proceeding brought underpursuant tounder Title VIII or X of the Act, although the validity and correctness of application of the numeric criteria or values derived under pursuant to this Subpart may be challenged in such proceedings underpursuant tounder subsection (g) of this Section.

g) Challenges to application of criteria and values.

- 1) A permittee may challenge the validity and correctness of application of a criterion or value derived by the Agency under<u>pursuant to</u> this Section only at the time such criterion or value is first applied in its NPDES permit under<u>pursuant to</u> 35 Ill. Adm. Code 309.152 or in an action <u>underpursuant tounder</u> Title VIII of the Act for violation of the toxicity water quality standard. Failure of a person to challenge the validity of a criterion or value at the time of its first application to that person² s facility constitutes shall constitute a waiver of a such challenge in any subsequent proceeding involving application of the criterion or value to that person.
- 2) Consistent with subsection (g)(1) of this Section, if a criterion or value is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion or value in a permit appeal <u>underpursuant tounder</u> 35 Ill. Adm. Code 309.181. In any such action, the Agency shall include in the record all information upon which it has relied in developing and applying the criterion or value, and whether such information was developed by the Agency or submitted by the petitioner. THE BURDEN OF PROOF SHALL BE ON THE PETITIONER pursuant to Section 40(a)(1) of the Act.
- 3) Consistent with subsection (g)(1) of this Section, in an action where alleged violation of the toxicity water quality standard is based on alleged excursion of a criterion or value, the person bringing the such action hasshall have has the burdens of going forward with proof and persuasion regarding the general validity and correctness of application of the

NOTICE OF PROPOSED AMENDMENTS

2826		criterion or value.
2827 2828 2829 2830	pe	ubsections (a) through (e) of this Section do not apply to USEPA registered esticides approved for aquatic application and applied under pursuant to the llowing conditions:
2831 2832 2833 2824	1)	Application must <u>-shall</u> be made in strict <u>compliance</u> accordance <u>compliance</u> with label directions;
2834 2835 2836 2837	2)	Applicator must <u>shall</u> be properly certified under the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972));
2838 2839 2840 2841	3)	
2842 2843 2844	4)	Aquatic <u>No aquatic</u> pesticide must not <u>shall</u> be applied to waters affecting public or food processing water supplies unless a permit to apply the
2845 2846 2847		pesticide has been obtained from the Agency. All permits must shall be issued so as not to cause a violation of the Act or of any of the Board's rules or regulations. To aid applicators in determining their
2848 2849 2850		responsibilities under this subsection (h), a list of waters affecting public water supplies will be published and maintained by the Agency's Division of Public Water Supplies.
2851 2852 2853 28545		Amended at 46 Ill. Reg, effective)

2854Section 302.545 Data Requirements

2855

2856The Agency <u>mustshallmust</u> review, for validity, applicability and completeness the data used in 2857calculating criteria or values. To the extent available, and to the extent not otherwise specified, 2858testing procedures, selection of test species and other aspects of data acquisition must be 2859according to methods published by USEPA or nationally recognized standards of organizations, 2860including, but not limited to, those methods found in Standard Methods, incorporated by 2861reference in 35 Ill. Adm. Code 301.106<u>Section 302.510</u>, or recommended in 40 CFR 132, and 2862incorporated by reference in 35 Ill. Adm. Code 301.106<u>Section 302.510</u>.

ILLINOIS REGISTER 1st	N	Noti	ce_
-----------------------	---	------	-----

																					r						
T	0	I	7	C	~	т	I	-	T		~	~	0	1		r	r	C	C	-		1	9	C	1	×.	•

NOTICE OF PROPOSED AMENDMENTS

2864 (Source: Amended at 46 Ill. Reg. _ , effective _) 2865 2866Section 302.550 Analytical Testing 2867 2868All methods of sample collection, preservation, and analysis used in applying any of the 2869requirements of this Subpart must-shall be consistent with the methods published by USEPA or 2870nationally recognized standards of organizations, including but not limited to those methods 2871 found in Standard Methods, incorporated by reference in 35 Ill. Adm. Code 301.106-Section 2872302.510, or recommended in 40 CFR 132 and incorporated by reference in 35 Ill. Adm. Code 2873301.106 Section 302.510. 2874 (Source: Amended at 46 Ill. Reg. _____, effective _____) 2875 2876 2877Section 302.553 Determining the Lake Michigan Aquatic Toxicity Criteria or Values --**2878General Procedures** 2879 2880The Lake Michigan Aquatic Life Criteria and Values are those concentrations or levels of a 2881 substance at which aquatic life is protected from adverse effects resulting from short or long term 2882exposure in water. 2883 2884 a) Tier I criteria and Tier II values to protect against acute effects in aquatic organisms will be calculated according to procedures listed at 35 Ill. Adm. 2885 2886 CodeSectionsCode 302.555, 302.560 and 302.563. The procedures of 35 Ill. 2887 Adm. CodeSectionCode 302.560 mustshallmust be used as necessary to allow for interactions with other water quality characteristics such as hardness, pH, 2888 temperature, etc. Tier I criteria and Tier II values to protect against chronic 2889 2890 effects in aquatic organisms must shall must be calculated according to the 2891 procedures listed at 35 Ill. Adm. CodeSectionCode 302.565. 2892 2893 **b**) Minimum data requirements. In order to derive a Tier I acute or chronic criterion, 2894 data must be available for at least one species of freshwater animal in at least 2895 eight different families such that the following taxa are included: 2896 2897 1) The family Salmonidae in the class Osteichthyes; 2898 2899 One other family in the class Osteichthyes; 2) 2900 2901 3) A third family in the phylum Chordata;

	2902		
	2903		4) A planktonic crustacean;
	2904		
	2905		5) A benthic crustacean;
	2906		
	2907		6) An insect;
	2908		
	2909		7) A family in a phylum other than Arthropoda or Chordata; and
	2910		
	2911		8) A family from any order of insect or any phylum not already represented.
	2912	``	
	2913	c)	Data for tests with plants, if available, must be included in the data set.
	2914 2915	<i>a</i>)	If data for acute effects are not available for all the eight families listed above, but
I	2913	d)	are available for the family Daphnidae, a Tier II value <u>mustshallmust</u> be derived
	2910		according to procedures in 35 Ill. Adm. CodeSectionCode 302.563. If data for
I	2918		chronic effects are not available for all the eight families, but there are acute and
I	2919		chronic data available according to 35 Ill. Adm. <u>CodeSectionCode</u> 302.565(b) so
I	2920		that three acute to chronic ratios (ACRs) can be calculated, then a Tier I chronic
L	2921		criterion can be derived according to procedures in 35 Ill. Adm. <u>CodeSectionCode</u>
'	2922		302.565. If three ACRs are not available, then a Tier II chronic value can be
	2923		derived according to procedures in 35 Ill. Adm. CodeSectionCode 302.565(b).
•	2924		
	2925	e)	Data must be obtained from species that have reproducing wild populations in
	2926		North America except that data from salt water species can be used in the
	2927		derivation of an ACR.
	2928		
	2929	(Sourc	e: Amended at 46 Ill. Reg, effective)
	2930		
			55 Determining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion
	2932(LMA 2933	AIC):	Independent of Water Chemistry
		auto tor	cicity of the chemical has not been shown to be related to a water quality
I			including , but not limited to, hardness, pH, or temperature, the Tier I LMAATC is
I		-	including, but not initiate to, naraness, pri, or temperature, the rich r EMAATC is ng the procedures below.
	2937	4311	is the procedures below.

- 2937
- 2938a)For each species for which more than one acute value is available, the Species2939Mean Acute Value (SMAV) is calculated as the geometric mean of the acute

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

values from all tests.

2941

2945

2947

2951 2952

2953

2958

2962

2963 2964

2965 2966

2971 2972

2973

- 2942b)For each genus for which one or more SMAVs are available, the Genus Mean2943Acute Value (GMAV) is calculated as the geometric mean of the SMAVs2944available for the genus.
- 2946 c) The GMAVs are ordered from high to low in numerical order.
- 2948d)Ranks (R) are assigned to the GMAVs from "1" for the lowest to "N" for the2949highest. If two or more GMAVs are identical, successive ranks are arbitrarily2950assigned.
 - e) The cumulative probability, P, is calculated for each GMAV as R/(N+1).
- 2954f)The GMAVs to be used in the calculations of subsection (g) of this Section must2955be those with cumulative probabilities closest to 0.05. If there are fewer than 592956GMAVs in the total data set, the values utilized must be the lowest four obtained2957through the ranking procedures of subsections (c) and (d) of this Section.
- 2959g)Using the GMAVs identified under pursuant to subsection (f) of this Section and2960the Ps calculated under pursuant to subsection (e) of this Section, the Final Acute2961Value (FAV) and the LMAATC are calculated as:

FAV = exp(A) and LMAATC = FAV/2

Where:

$\Lambda = I$	+0.2236	S
	0.2250	σ

- $L = [\Sigma(\ln GMAV) S(\Sigma(P^{0.5}))]/4$
- $S = [[\Sigma((\ln GMAV)^{-2}) ((\Sigma(\ln GMAV))^{-2})/4]/[-\Sigma(P) ((\Sigma(P^{0.5}))^{-2})/4]]^{0.5}$
 - $\underline{\mathbf{A}} = \underline{\mathbf{L}} + 0.2236 \, \mathbf{S}$
 - $\underline{L} \equiv [\Sigma(\ln GMAV) S(\Sigma(P(0.5)))]/4$
 - $\underline{S} = [[\Sigma((\ln GMAV)_{-}^{2}) ((\Sigma(\ln GMAV))_{-}^{2})/4] / [\Sigma(P) ((\Sigma(P_{-}^{0.5}))_{-}^{2})/4]]^{0.5}$

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

<i>2</i> // 1	
2975	h) If a resident or indigenous species, whose presence is necessary to sustain
2976	commercial or recreational activities, will not be protected by the calculated
2977	FAV, then the SMAV for that species is used as the FAV.
2978	
2979	(Source: Amended at 46 Ill. Reg, effective)
2980	

2981Section 302.560 Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity 2982Criterion (LMAATC): Dependent on Water Chemistry

2983

2974

2984If data are available to show that a relationship exists between a water quality characteristic 2985(WQC) and acute toxicity to two or more species, a Tier I LMAATC must be calculated using 2986procedures in this Section. Although the relationship between hardness and acute toxicity is 2987typically non-linear, it can be linearized by a logarithmic transformation (i.e., for any variable, K, 2988f(K) = logarithm of K) of the variables and plotting the logarithm of hardness against the 2989logarithm of acute toxicity. Similarly, relationships between acute toxicity and other water 2990quality characteristics, such as pH or temperature, may require a transformation, including no 2991 transformation (i.e., for any variable, K, f(K) = K) for one or both variables to obtain least 2992squares linear regression of the transformed acute toxicity values on the transformed values of 2993the water quality characteristic. An LMAATC is calculated using the following procedures. 2994

2995	a)	For each species for which acute toxicity values are available at two or more
2996	,	different values of the water quality characteristic, a linear least squares
2997		regression of the transformed acute toxicity (TAT) values on the transformed
2998		water quality characteristic (TWQC) values is performed to obtain the slope of the
2999		line describing the relationship.
3000		

- 3001 b) Each of the slopes determined underpursuant tounder subsection (a) of this 3002 Section is evaluated as to whether it is statistically valid, considering taking into 3003 account considering the range and number of tested values of the water quality characteristic and the degree of agreement within and between species. If slopes 3004 3005 are not available for at least one fish and one invertebrate species, or if the available slopes are too dissimilar or if too few data are available to define the 3006 3007 relationship between acute toxicity and the water quality characteristic, then the 3008 LMAATC must be calculated using the procedures in 35 Ill. Adm. 3009 CodeSectionCode 302.555. 3010
- 3011 Normalize the TAT values for each species by subtracting W, the arithmetic mean c)

3012 3013 3014 3015 3016		of the TAT values of a species, from each of the TAT values used in the determination of the mean, such that the arithmetic mean of the normalized TAT values for each species individually or for any combination of species is zero (0.0) .			
3017 3018 3019 3020	d)	Normalize the TWQC values for each species using X, the arithmetic mean of the TWQC values of a species, in the same manner as in subsection (c)-of this Section.			
3021 3022 3023 3024	e)	Group all the normalized data by treating them as if they were from a single species and perform a least squares linear regression of all the normalized TAT values on the corresponding normalized TWQC values to obtain the pooled acute slope, V.			
3025 3026 3027 3028	f)	For each species, the graphical intercept representing the species TAT intercept, $f(Y)$, at a specific selected value, Z, of the WQC is calculated using the equation:			
3029		f(Y) = W - V(X - g(Z))			
3030		XX 71			
3031 3032		Where:			
3032		f() is the transformation used to convert acute toxicity values to TAT values			
3034		It is the transformation used to convert dedic to kienty values to TTTT values			
3035 3036		Y is the species acute toxicity intercept or species acute intercept			
3030		W is the arithmetic mean of the TAT values as specified in subsection (c) of this			
3038		Section			
3039					
3040		V is the pooled acute slope as specified in subsection (e) of this Section			
3041					
3042		X is the arithmetic mean of the TWQC values as specified in subsection (c) of			
3043		this Section			
3044					
3045		g() is the transformation used to convert the WQC values to TWQC values			
3046					
3047		Z is a selected value of the WQC			
3048					
		f() is the transformation used to convert acute toxicity values to TAT			

ILLR	NOIS RI	GISTER 1 St Notice JCAR350302-2207052r01				
		POLLUTION CONTROL BOARD				
	NOTICE OF PROPOSED AMENDMENTS					
		Yvalues is the species acute toxicity intercept or species acute interceptWis the arithmetic mean of the TAT values as specified in subsection (c)Vis the pooled acute slope as specified in subsection (e)Xis the arithmetic mean of the TWQC values as specified in subsection (c)g()is the transformation used to convert the WQC values to TWQC				
		$\underline{\underline{Z}} \frac{\underline{\underline{values}}}{\underline{\underline{is a selected value of the WQC}}}$				
3049 3050 3051 3052 3053	g)	For each species, determine the species acute intercept, Y, by carrying out an inverse transformation of the species TAT value, $f(Y)$. For example, in the case of a logarithmic transformation, Y = antilogarithm of $(f(Y))$; or in the case where no transformation is used, Y = $f(Y)$.				
3054 3055 3056 3057 3058 3059	h)	The Final Acute Intercept (FAI) is derived by using the species acute intercepts, obtained from subsection (f) of this Section, in complianceaccordancecompliance with the procedures described in 35 III. Adm. CodeSectionCode 302.555 (b) through (g), with the word "value" replaced by the word "intercept". Note that in this procedure geometric means and natural logarithms are always used. The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two. If, for a commercially or recreationally important species, the geometric mean of the acute values at Z is lower than the FAV at Z, then the geometric mean of that species must be used as the FAV. The LMAATC at any value of the WQC, denoted by WQCx, is calculated using the terms defined in subsection (f) of this Section and the equation:				
3060 3061 3062 3063 3064	i)					
3065 3066 3067 3068	j)					
3069 3070		LMAATC = exp[V(g(WQCx) - g(Z)) + f(AAI)]				
 3071 (Source: Amended at 46 Ill. Reg, effective) 3072 3073Section 302.563 Determining the Tier II Lake Michigan Basin Acute Aquatic Life 3074Value (LMAATV) 3075 						

1

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3076If all eight minimum data requirements for calculating a FAV using Tier I procedures are not 3077met, a Tier II LMAATV must be calculated for a substance as follows: 2070

30/8		
3079	a)	The lowest GMAV in the database is divided by the Secondary Acute Factor
3080		(SAF) corresponding to the number of satisfied minimum data requirements listed
3081		in the Tier I methodology (35 Ill. Adm. <u>CodeSectionCode</u> 302.553). In order to
3082		calculate a Tier II LMAATV, the data base must contain, at a minimum, a GMAV
3083		for one of the following three genera in the family Daphnidae — Ceriodaphnia
3084		sp., Daphnia sp., or Simocephalus sp. The Secondary Acute Factors are:
3085		

	Number of Minimum data requirements satisfied (required taxa)	Secondary Acute Factor
	1	43.8
	2	26.0
		16.0
	3	14.0
	4	12.2
	5	10.4
	6 7	8.6
3086	1	
3087 b) 3088 3089	If dependent on a water quality characteristic, the T calculated according to 35 Ill. Adm. CodeSection	
	ource: Amended at 46 Ill. Reg, effective)
3092Section 3	02.565 Determining the Lake Michigan Basin Chron (LMCATC) or the Lake Michigan Basin Chronic Ac V)	

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3096 a) Determining Tier I LMCATC

3097 3098

3099

3100

3101

3102

3103

3104 3105

3106 3107

3108

3109 3110

311131123113

3114 3115

3116 3117

3118 3119 3120

3121

3122

3123 3124

3125

3126

3127 3128 3129

3130

- When chronic toxicity data are available for at least eight resident or indigenous species from eight different North American genera of freshwater organisms as specified in 35 Ill. Adm. <u>CodeSectionCode</u> 302.553, a Tier I LMCATC is derived in the same manner as the FAV in 35 Ill. Adm. <u>CodeSectionCode</u> 302.555 or 302.560 by substituting LMCATC for FAV or FAI, chronic for acute, SMCV (Species Mean Chronic Value) for SMAV, and GMCV (Genus Mean Chronic Value) for GMAV.
- 2) If data are not available to meet the requirements of subsection (a)-of this Section, a Tier I LMCATC is calculated by dividing the FAV by the geometric mean of the acute-chronic ratios (ACRs) obtained from at least one species of aquatic animal from at least three different families provided that of the three species:
 - A) At least one is a fish;
 - B) At least one is an invertebrate; and
 - C) At least one species is an acutely sensitive freshwater species if the other two are saltwater species.
 - 3) The acute-chronic ratio (ACR) for a species equals the acute toxicity concentration from data considered under 35 Ill. Adm. <u>CodeSectionCode</u> 302.555 or 302.560, divided by the chronic toxicity concentration.
 - 4) If a resident or indigenous species whose presence is necessary to sustain commercial or recreational activities will not be protected by the calculated LMCATC, then the SMCV for that species is used as the CATC.
- b) Determining the Tier II LMCATV
- 31311)If all eight minimum data requirements for calculating a FCV using Tier I3132procedures are not met, or if there are not enough data for all three ACRs,3133a Tier II Lake Michigan Chronic Aquatic Life Toxicity Value

NOTICE OF PROPOSED AMENDMENTS

3134				t be calculated using a secondary acute chronic ratio (SACR)
3135		determ	ined as	follows:
3136				
3137		A)		er than three valid experimentally determined ACRs are
3138			availa	ole:
3139				
3140			i)	Use sufficient ACRs of 18 so that the total number of
3141				ACRs equals three; and
3142				
3143			ii)	Calculate the Secondary Acute-Chronic Ratio as the
3144				geometric mean of the three ACRs; or
3145				
3146		B)		xperimentally determined ACRs are available, the SACR is
3147			18.	
3148				
3149	2)	Calcula	ate the	Tier II LMCATV using one of the following equations:
3150				
3151		A)	Tier II	LMCATV = FAV / SACR
3152		D)	— : 11	
3153		B)	Tier II	LMCATV = SAV / FACR
3154		(\mathbf{C})	T: II	INCATV CAV/CACD
3155		C)	I ter II	LMCATV = SAV / SACR
3156			XX 71	
3157			Where	2.
3158				the SAV equals 2 times the value of the Tier II I MAATY
3159 3160				the SAV equals 2 times the value of the Tier II LMAATV calculated in 35 Ill. Adm. <u>CodeSectionCode</u> 302.563
3161				calculated in 55 III. Adili. Code Section Code 502.505
3162	3)	If for a	comm	nercially or recreationally important species, the SMCV is
3162	5)			e calculated Tier II LMCATV, then the SMCV must be used
3164				LMCATV.
3165		as the		
3166	(Source: Ame	ended at	46 111	Reg, effective)
3167				
	ction 302.570 Pro	cedures	for D	eriving Bioaccumulation Factors for the Lake Michigan
3169 Ba				
3170	-			
	bioaccumulation fa	ctor (BA	AF) is u	used to relate the concentration of a substance in an aquatic

3171A bioaccumulation factor (BAF) is used to relate the concentration of a substance in an aquatic

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3172 organism to the concentration of the substance in the waters in which the organism resides when 3173all routes of exposure (ambient water and food) are included. A BAF is used in the derivation of 3174water quality criteria to protect wildlife and criteria and values to protect human health. 3175 3176 Selection of data. BAFs can be obtained or developed from one of the following a) 3177 methods, listed in order of preference. 3178 3179 Field-measured BAF. 1) 3180 3181 2) Field-measured biota-sediment accumulation factor (BSAF). 3182 3183 3) Laboratory-measured bioconcentration factor (BCF). 3184 The concentration of particulate organic carbon (POC) and dissolved organic carbon (DOC) in the test solution must-shall be either measured or 3185 3186 reliably estimated. 3187 Predicted BCF. 3188 4) 3189 Predicted baseline BCF = Kow. 3190 3191 3192 Calculation of baseline BAFs for organic chemicals. b) The most preferred BAF or BCF from above is used to calculate a baseline BAF 3193 which in turn is utilized to derive a human health or wildlife specific BAF. 3194 3195 3196 1) Procedures for determining the necessary elements of baseline calculation. 3197 3198 Lipid normalization. The lipid-normalized concentration, $C_{4\underline{1}}$, of a A) 3199 chemical in tissue is defined using the following equation: 3200 $C_{11} = C_b / f_{11}$ 3201 3202 Where: 3203 3204 3205 C_{b} = concentration of the organic chemical in the tissue of aquatic biota (either whole organism or specified tissue) (µg/g) 3206 f_{i} = fraction of the tissue that is lipid 3207 3208 C_b = concentration of the organic chemical in the tissue of

ILLINOIS REGISTER	st	No	tice

			$\frac{\text{aquatic biota (either whole organism or specified}}{\underline{\text{tissue}} (\mu g/g)}$ $\underline{f_1} \equiv \frac{f_1}{f_1}$
3209 3210 3211 3212 3213 3214		B)	Bioavailability. The fraction of the total chemical in the ambient water that is freely dissolved, f_{fd} , must <u>shall</u> be calculated using the following equation:
3215 3216 3217 3218			$f_{fd} = 1 \; / \; \; \{ \; 1 + [(DOC)(Kow)/10] + [(POC)(Kow)] \; \}$ Where:
3219 3220 3221 3222 3223			DOC = concentration of dissolved organic carbon, kg of dissolved organic carbon/L of water Kow = octanol-water partition coefficient of the chemical POC = concentration of particulate organic carbon, kg of particulate organic carbon, kg of
3223			particulate organic carbon/L of water $\underline{DOC} \equiv \underline{concentration of dissolved organic carbon, kg of dissolved organic carbon/L of water\underline{Kow} \equiv octanol-water partition coefficient of the chemical$
2225			$\underline{\underline{POC}} \equiv \underline{\underline{concentration of particulate organic carbon, kg of}}_{\underline{particulate organic carbon/L of water}}$
3225 3226 3227 3228 3229 3230		C)	Food Chain Multiplier (FCM). For an organic chemical, the FCM used must <u>shall</u> be taken from Table B-1 in Appendix B of 40 CFR 132, <u>Appendix B (1996)</u> incorporated by reference at 35 Ill. Adm. Code 301.106 <u>Section 302.510</u> .
3231 3232	2)	Calcul	ation of baseline BAFs.
3233 3234		A)	From field-measured BAFs:
3234 3235 3236			Baseline BAF = { [measured BAF _{tT} / f_{fd}] - 1 } { 1 / $f_{4\underline{1}}$ }
3237			Where:

		POLLUTION CONTROL BOARD
	NOT	FICE OF PROPOSED AMENDMENTS
3238 3239 3240 3241 3242 3243 3244	s f f	$BAF_{tT} = BAF$ based on total concentration in tissue and water of study organism and site $F_{t} = fraction of the tissue of study organism that is lipidF_{td} = fraction of the total chemical that is freely dissolved in the sumbient water$
5277		$\underline{BAF_{tT}} \equiv \underline{BAF \text{ based on total concentration in tissue and}} \\ \underline{Mathbb{Mathbb{B}}_{t1}} \equiv \underline{Mathbb{B}} \\ \underline{f_{1}} \equiv \underline{fraction \text{ of the tissue of study organism that is}} \\ \underline{f_{fd}} \equiv \underline{fraction \text{ of the total chemical that is freely}} \\ \underline{f_{fd}} \equiv \underline{fraction \text{ of the total chemical that is freely}} \\ \underline{dissolved in the ambient water} $
3245 3246 3247 3248	_, _	From a field measured biota-sediment accumulation factor BSAF):
3249 3250 3251	·	Baseline BAF) _i = (baseline BAF) _r (BSAF) _i (Kow) _i / (BSAF) _r (Kow) _r
3252 3253 3254	(Where: $\frac{BSAF}{} = BSAF \text{ for chemical "}^{"}$ $BSAF = BSAF \text{ for the reference sherical ""}$
3255 3256 3257 3258 3259	($\frac{BSAF}{r} = BSAF$ for the reference chemical "r" $\frac{Kow}{r} = octanol-water partition coefficient for chemical "r" \frac{Kow}{r} = octanol-water partition coefficient for the reference\frac{hemical "r"}{r}$
5257		$\frac{(BSAF)_{i}}{(BSAF)_{i}} \equiv \frac{BSAF \text{ for chemical "}_{i}}{BSAF)_{r}} \equiv \frac{BSAF \text{ for the reference chemical "}_{r}}{(KOW)_{i}} \equiv \frac{OCT}{OCT} + OCT}$ $\frac{(KOW)_{i}}{(KOW)_{i}} \equiv \frac{OCT}{OCT} + OCT} + OCT}{OCT} + OCT} + OCT}$
3260 3261 3262 3263	i	 <u>chemical "r</u> A BSAF must<u>shall</u> be calculated using the following equation:

ILLINOIS REGISTER 1 st 1	JCAR350302-2207052r01
l	POLLUTION CONTROL BOARD
N N	OTICE OF PROPOSED AMENDMENTS
3264 3265 3266 3267 3268 3269 3270 3271 3272	$BSAF = C_{4\underline{1}} / C_{soc}$ Where: $C_4 = \text{the lipid-normalized concentration of the chemical in tissue}$ $C_{soc} = \text{the organic carbon-normalized concentration of the chemical in sediment}$
3273 3274 3275 3276 3277	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
3278 3279 3280 3281 3282 3283 3284	$C_{soc} = C_s / f_{oc}$ Where: $C_s = \text{concentration of chemical in sediment (µg/g sediment)}$ $f_{oe} = \text{fraction of the sediment that is organic carbon}$ $\boxed{C_s} = \underbrace{\text{concentration of chemical in sediment (µg/g sediment)}}_{sediment}$ $\underbrace{f_{oc}} = \underbrace{\text{fraction of the sediment that is organic carbon}}$
3285 3286 C) 3287 3288 3289 3290 3291 3292 3293	From a laboratory-measured BCF: baseline BAF = (FCM) { [measured BCF _{tT} / f_{fd}] - 1 } { 1 / $f_{i\underline{1}}$ } Where: BCF _{tT} = BCF based on total concentration in tissue and water. f_{t} = fraction of the tissue that is lipid

			POLLUTION CONTROL BOARD
		NO	TICE OF PROPOSED AMENDMENTS
3294 3295 3296 3297 3298 3299 3300		• 	f_{fd} = fraction of the total chemical in the test water that is freely dissolved FCM = the food-chain multiplier obtained from Table B-1 in <u>Appendix B of 40 CFR 132, Appendix B, incorporated by</u> reference at <u>35 III. Adm. Code 310.106 Section 302.510, by linear</u> interpolation for trophic level 3 or 4, as necessary
5500			<u>BCF_{tT} = BCF based on total concentration in tissue and water.</u>
			$\underline{f_1} \equiv \underline{fraction of the tissue that is lipid}$
			$\underline{\underline{f}_{fd}} \equiv \frac{\text{fraction of the total chemical in the test water that is}}{\underline{\underline{freely dissolved}}}$
			FCM=the food-chain multiplier obtained from Table B-1 in Appendix B of 40 CFR 132, incorporated by reference at 35 Ill. Adm. Code 301.106, by linear interpolation for trophic level 3 or 4, as necessary
3301 3302		D)]	From a predicted BCF:
3303		D) 1	
3304 3305		1	baseline $BAF = (FCM)$ (predicted baseline BCF) = (FCM)(Kow)
3306 3307			Where:
3308		1	FCM - the food-chain multiplier obtained from Table B-1 in
3309 3310			Appendix B of 40 CFR 132, Appendix 5, incorporated by
3310			reference at <u>35 Ill. Adm. Code 301.106</u> Section 302.510, by linear interpolation for trophic level 3 or 4, as necessary
3312 3313			Kow = octanol-water partition coefficient
5515			FCM=the food-chain multiplier obtained from Table B-1 in Appendix B of 40 CFR 132, incorporated by reference at 35 Ill. Adm. Code 301.106 302.510, by linear interpolation for trophic level 3 or 4, as necessaryKow=octanol-water partition coefficient
3314			
3315 3316	c)	Human health a	and wildlife BAFs for organic chemicals:

ILLINOIS REGISTER 1st Notice

1

I		===	
			POLLUTION CONTROL BOARD
l		A	OTICE OF PROPOSED AMENDMENTS
3317 3318 3319 3320 3321 3322	1)	(b)(1) wildl stand	ion freely dissolved (f_{fd}). By using the equation in subsection (B) of this Section, the f_{fd} to be used to calculate human health and ife BAFs for an organic chemical must shall be calculated using a ard POC concentration of 0.00000004 kg/L and a standard DOC entration of 0.000002 kg/L:
3323 3324			$f_{fd} = 1 / [1 + (0.00000024 \text{ kg/L})(\text{Kow})]$
3325 3326 3327	2)		an health BAF. The human health BAFs for an organic chemical shall be calculated using the following equations:
3328 3329		A)	For trophic level 3:
3330 3331			Human Health $BAF_{HHTL3} = [(baseline BAF)(0.0182) + 1] (f_{fd})$
3332 3333		B)	For trophic level 4:
3334 3335			Human Health BAF _{HHTL4} = [(baseline BAF) $(0.0310) + 1$] (f _{fd})
3336 3337			Where:
3338 3339 3340			0.0182 and 0.0310 are the standardized fraction lipid values for trophic levels 3 and 4, respectively, that are used to derive human health criteria and values
3341 3342 3343 3344	3)		life BAF. The wildlife BAFs for an organic chemical must <u>-shall</u> be lated using the following equations:
3345 3346		A)	For trophic level 3:
3347 3348			Wildlife BAF _{WLTL3} = [(baseline BAF)(0.0646) +1] (f_{fd})
3349 3350		B)	For trophic level 4:
3351 3352			Wildlife BAF _{WLTL4} = [(baseline BAF)(0.1031) + 1] (f _{fd})
3353 3353 3354			Where:

ILLINOIS R	EGISTER1 st Notice	JCAR350302-2207052r01
	POLLUTION CO	NTROL BOARD
	NOTICE OF PROPOS	SED AMENDMENTS
3355 3356 3357 3358 3359 d) 3360 3361 3362 3363 3364 3365 3366 2267	for trophic derive wild Human health and wildlife BAFs chemicals the baseline BAFs for t the BCF determined for the chemi 1) Human health. Measured health BAFs for inorganic in edible tissue (e.g., musc	for inorganic chemicals. For inorganic rophic levels 3 and 4 are both assumed to equal cal with fish. BAFs and BCFs used to determine human chemicals must <u>shall</u> be based on concentration le) of freshwater fish.
3367 3368 3369 3370	,	and BCFs used to determine wildlife BAFs for shall be based on concentration in the whole d invertebrates.
3372 3373Section 302. 3374Lake Michig	rce: Amended at 46 Ill. Reg 575 Procedures for Deriving Tier gan Basin to Protect Wildlife	, effective) I Water Quality Criteria and Values in the
3377if not exceed 3378resulting from 3379aquatic prey 3380calculated ur 3381chronic crite 3382to protect rep 3383river otter. T	led protects Illinois wild mammal an m ingestion of surface waters of the l organisms taken from surface waters nder this Section protect against long ria. The methodology involves utiliz presentative or target species: bald ea	IWC) is the concentration of a substance which d bird populations from adverse effects Lake Michigan Basin and from ingestion of s of the Lake Michigan Basin. Wildlife criteria -term effects and are therefore considered zation of data from test animals to derive criteria agle, herring gull, belted kingfisher, mink and species specific criteria for bird species or ect a broad range of species.
3386 a) 3387 3388	This method must <u>-shall</u> also be us to consider the following factors:	ed for non-BCCs when appropriately modified
3389 3390 3391 3392	 Selection of scientifically j Relevant routes of chemical 	

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

3393 3394		3)	Pertir	nent toxicity endpoints.	
3395 3396	b)	Minin	Ainimum data requirements:		
3397 3398 3399		1)		dose (TD). In order to calculate a LMWC the following minimal data is required:	
3400 3401 3402 3403			A)	There must be at least one data set showing dose-response for oral, subchronic, or chronic exposure of 28 days for one bird species; and	
3403 3404 3405 3406 3407			B)	There must be at least one data set showing dose-response for oral, subchronic, or chronic exposure of 90 days for one mammal species.	
3407 3408 3409		2)	Bioac	ccumulation Factor (BAF) data requirements:	
3410 3411 3412			A)	For any chemical with a BAF of less than 125 the BAF may be obtained by any method; and	
3413 3414 3415			B)	For chemicals with a BAF of greater than 125 the BAF must come from a field measured BAF or Biota-Sediment Accumulation Factor (BSAF).	
3416 3417 3418	c)	Princ	iples for	r development of criteria	
3419 3420 3421 3422		1)	or con feedin	standardization. The data for the test species must be expressed as, nverted to, the form mg/kg/d utilizing the guidelines for drinking and ng rates and other procedures in 40 CFR 132, incorporated by ence in 35 Ill. Adm. Code 301.106 <u>at Section 302.510</u> .	
3423 3424 3425 3426		2)		rtainty factors (UF) for utilizing test dose data in the calculation of rget species value (TSV);	
3420 3427 3428 3429 3430			A)	Correction for intermittent exposure. If the animals used in a study were not exposed to the toxicant each day of the test period, the no observed adverse effect level (NOAEL) must be multiplied by the ratio of days of exposure to the total days in the test period.	

			POLLUTION CONTROL BOARD
		N	OTICE OF PROPOSED AMENDMENTS
3431 3432 3433 3434		B)	Correction from the lowest observed adverse effect level (LOAEL) to NOAEL (UF ₁₁). For those substances for which a LOAEL has been derived, the UF ₁ <u>mustshall must</u> not be less than one and
3435 3436 3437		C)	should not exceed 10. Correction for subchronic to chronic extrapolation (UF _s). In
3438 3439 3440 3441		,	instances where only subchronic data are available, the TD may be derived from subchronic data. The value of the UF _s $\frac{\text{must}shall_{must}}{\text{must}}$ not be less than one and should not exceed 10.
3442 3443 3444 3445		D)	Correction for interspecies extrapolations (UF _a). For the derivation of criteria, a UF _a must <u>shall</u> not be less than one and should not exceed 100. The UF _a must <u>shall</u> be used only for extrapolating toxicity data across species within a taxonomic class. A species
3446 3447 3448			specific UF_a must <u>-shall</u> be selected and applied to each target species, consistent with the equation in subsection (d).
3449 3450 3451	d)		f TSV. The TSV, measured in milligrams per liter (mg/L), is cording to the equation:
3452 3453 3454		TSV = { [TD }	$ x Wt] / [UF_a x UF_s x UF_{41}] \} / \{ W + - \frac{\Sigma[F_{TLi}\Sigma[F_{TLi}}{\Sigma} x BAF_{WLTLi}] \} $
3455 3456		Where:	
3457 3458 3459		•	species value in milligrams of substance per liter (mg/L). e that is toxic to the test species, either NOAEL or LOAEL.
3460 3461 3462		(unitless). A	ertainty factor for extrapolating toxicity data across species species specific UF _a <u>must</u> shall be selected and applied to each target stent with the equation.
3463 3464 3465		UF _s – the unc exposures (un	ertainty factor for extrapolating from subchronic to chronic itilities in the second
3466 3467 3468		$UF_{i} = the unco$	ertainty factor for extrapolation from LOAEL to NOAEL (unitless)

ILLINOIS REGISTER1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3469 Wt = average weight in kilograms (kg) of the target species. 3470 W = average daily volume of water in liters consumed per day (L/d) by the target 3471 3472 species. 3473 3474 F_{TLi} = average daily amount of food consumed by the target species in kilograms 3475 (kg/d) for trophic level i. 3476 3477 BAF_{wLTLi} = aquatic life bioaccumulation factor with units of liter per kilogram (L/kg), as derived from 35 Ill. Adm. CodeSection 302.570 for trophic level i. 3478 3479

<u>TSV</u>	Ξ	target species value in milligrams of substance per liter
TD	_	(mg/L). test dose that is toxic to the test species, either NOAEL
	Ξ	LOAEL.
<u>UF</u> _a	Ξ	the uncertainty factor for extrapolating toxicity data act
	_	species (unitless). A species-specific UF _a must be selec
		and applied to each target species, consistent with the
		equation.
$\underline{\underline{Uf}}_{\underline{s}}$	Ξ	the uncertainty factor for extrapolating from subchronic
		chronic exposures (unitless).
$\underline{\underline{Uf_1}}$	=	the uncertainty factor for extrapolation from LOAEL to
		NOAEL (unitless).
$\frac{Wt}{W}$	Ξ	average weight in kilograms (kg) of the target species.
W	Ξ	average daily volume of water in liters consumed per d
-		(L/d) by the target species.
<u>F_{TLi}</u>	=	average daily amount of food consumed by the target sp
DAE		in kilograms (kg/d) for trophic level i.
<u>BAF_{WLTLi}</u>	=	aquatic life bioaccumulation factor with units of liter po
		kilogram (L/kg), as derived from 35 Ill. Adm. Code 302
		for trophic level i.

3482 3483

3480

3481

e)—

3484

for each target species. The geometric mean TSVs of all mammal species is

ILLINOIS REGISTER 1st Notice_

POLLUTION CONTROL BOARD

3485 3486 2487				also of all bird species. The LMWC is the lower of the bird or netric mean TSV.
3487	(5			t 46 III Dec offective
3488 3489	(Sour	ce: Am	ended a	t 46 Ill. Reg, effective)
	n 307 5	8 0 D ro	andura	s for Deriving Water Quality Criteria and Values in the Lake
				Human Health - General
3492	gan Das		IUICCI	Tuman Ticatti - Ociciai
3493	a)	The L	ake Mic	higan Basin human health criteria or values for a substance are
3494	a)			ations at which humans are protected from adverse effects resulting
3495				al exposure to, or ingestion of, the waters of Lake Michigan and
3496				of aquatic organisms taken from the waters of Lake Michigan. A
3497			-	n Human Health Threshold Criterion (LMHHTC) or Lake Michigan
3498			0	Threshold Value (LMHHTV) will be calculated for all substances
3499				5 Ill. Adm. CodeSectionCode 302.585, if data is available. Water
3500			0	or values for substances which are, or may be, carcinogenic to
3501				lso be calculated according to procedures for the Lake Michigan
3502				Nonthreshold Criterion (LMHHNC) or the Lake Michigan Human
3503				eshold Value (LMHHNV) in 35 Ill. Adm. CodeSectionCode
3504		302.59		
3505				
3506	b)	Minim	um data	a requirements for BAFs for Lake Michigan Basin human health
3507	,	criteria		
3508				
3509		1)	Tier I.	
3510		,		
3511			A)	For all organic chemicals, either a field-measured BAF or a BAF
3512				derived using the BSAF methodology is required unless the
3513				chemical has a BAF less than 125, then a BAF derived by any
3514				methodology is required; and
3515				
3516			B)	For all inorganic chemicals, including organometals such as
3517				mercury, either a field-measured BAF or a laboratory-measured
3518				BCF is required.
3519				
3520		2)		Any bioaccumulation factor method in 35 Ill. Adm.
3521			CodeS	ectionCode 302.570(a) may be used to derive a Tier II criterion.
3522				

ILLINOIS REGISTER 1st Notice JCAR350302-2207052r01 POLLUTION CONTROL BOARD **NOTICE OF PROPOSED AMENDMENTS** (Source: Amended at 46 Ill. Reg. _, effective __) 3523 3524 3525Section 302.585 Procedures for Determining the Lake Michigan Basin Human Health 3526Threshold Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold 3527Value (LMHHTV) 3528 3529The LMHHTC or LMHHTV is derived for all toxic substances from the most sensitive end point 3530 for which there exists a dosage or concentration below which no adverse effect or response is 3531likely to occur. 3532 3533 Minimum data requirements: a) 3534 3535 Tier I. The minimum data set sufficient to derive a Tier I LMHHTC 1) 3536 mustshallmust include at least one epidemiological study or one animal 3537 study of greater than 90 days duration; or 3538 3539 Tier II. When the minimum data for deriving Tier I criteria are not 2) 3540 available, a more limited database consisting of an animal study of greater than 28 days duration mustshallmust be used. 3541 3542 3543 Principles for development of Tier I criteria and Tier II values: **b**) 3544 3545 1) The experimental exposure level representing the highest level tested at 3546 which no adverse effects were demonstrated (NOAEL) must shall must be 3547 used for calculation of a criterion or value. In the absence of a NOAEL, a 3548 LOAEL must be used if it is based on relatively mild and 3549 reversible effects: 3550 3551 Uncertainty factors (UFs) must-shall be used to account for the 2) 3552 uncertainties in predicting acceptable dose levels for the general human population based upon experimental animal data or limited human data: 3553 3554 3555 A) A UF of 10 must-shall be used when extrapolating from 3556 experimental results of studies on prolonged exposure to average healthy humans; 3557 3558 3559 B) A UF of 100 must-shall be used when extrapolating from results of

long-term studies on experimental animals;

3560

				POLLUTION CONTROL BOARD
			N	OTICE OF PROPOSED AMENDMENTS
3561 3562 3563			C)	A UF of up to 1000 must <u>-shall</u> be used when extrapolating from animal studies for which the exposure duration is less than chronic
3564 3565				but greater than subchronic;
3566 3567 3568			D)	A UF of up to 3000 must <u>-shall</u> be used when extrapolating from animal studies for which the exposure duration is less than subchronic;
3569 3570 3571 3572 3573			E)	An additional UF of between one and ten must <u>shall</u> be used when deriving a criterion from a LOAEL. The level of additional uncertainty applied <u>willshallwill</u> depend upon the severity and the incidence of the observed adverse effect;
3574 3575 3576 3577			F)	An additional UF of between one and ten must <u>-shall</u> be applied when there are limited effects data or incomplete sub-acute or chronic toxicity data;
3578 3579 3580 3581		3)		otal uncertainty ($\Xi \sum$ of the uncertainty factors) must shall-not exceed 0 for Tier I criterion and 30,000 for Tier II value; and
3582 3583 3584 3585		4)	accep	udy results must <u>shall</u> be converted to the standard unit for table daily exposure of milligrams of toxicant per kilogram of body at per day (mg/kg/day). Doses must shall be adjusted for continuous sure.
3586 3587	c)	Tier l	criteria	and Tier II value derivation.
3588 3589 3590		1)	Deter	mining the Acceptable Daily Exposure (ADE)
3591 3592			ADE	= test value / $\Xi \sum$ of the UFs from subsection (b)(2) of this Section
3593 3594			Wher	e:
3595 3596 3597				acceptable daily exposure is in milligrams toxicant per kilogram body weight per day (mg/kg/day)
3598		2)	Deter	mining the Lake Michigan Basin Human Health Threshold Criterion

ILLINOIS REGIS	TER1 st Notice	JCAR350302-2207052r01
	POLLUTION	I CONTROL BOARD
l	NOTICE OF PRO	PPOSED AMENDMENTS
3599 3600 3601	(LMHHTV)	ke Michigan Basin Human Health Threshold Value
3602 3603	LMHHTC or LMHH	$\Gamma V =$
3604 3605		{ ADE x BW x RSC } /
3606 3607	{ WC +	[(FC _{TL3} x BAF _{HHTL3}) + (FC _{TL4} x BAF _{HHTL4})] }
3608 3609	Where:	
3610 3611	LMHHTC or LMHH	FV is in milligrams per liter (mg/L)
3612 3613 3614	ADE = acceptable dai weight per day (mg/kg	ily intake in milligrams toxicant per kilogram body g/day)
3615 3616	RSC - relative source	contribution factor of 0.8
3617 3618	BW = weight of an av	zerage human (BW = 70 kg)
3619 3620		r consumption (both drinking and incidental waters classified as public water supplies – two
3621 3622 3623	• • •	a incidental daily water ingestion for surface waters inking water sources = 0.01 liters/day
3624 3625 3626	FC _{TL3} = mean consum of regionally caught fi	nption of trophic level 3 fish by regional sport fishers reshwater fish = 0.0036 kg/day
3627 3628 3629	FC _{TL4} = mean consum of regionally caught fi	nption of trophic level 4 fish by regional sport fishers reshwater fish = 0.0114 kg/day
3630 3631 3632		ealth bioaccumulation factor for edible portion of a derived using the BAF methodology in <u>35 Ill. Adm.</u>
3633 3634 3635 3636		ealth bioaccumulation factor for edible portion of a derived using the BAF methodology in <u>35 Ill. Adm.</u>

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3637

LMHHTC	or LMHHTV is in milligrams per liter (mg/L)
<u>ADE</u>	$\frac{1}{2} \frac{\text{acceptable daily intake in milligrams toxicant per}}{\text{kilogram body weight per day (mg/kg/day)}}$
<u>RSC</u>	= <u>relative source contribution factor of 0.8</u>
<u>BW</u>	\equiv weight of an average human (BW = 70 kg)
<u>WC</u>	per capita water consumption (both drinking and incidental exposure) for surface waters classified as public water supplies = two liters/day; or per capita incidental daily water ingestion for surface waters not wood as human drinking water sources = 0.01
<u>FC_{TL3}</u>	<pre>used as human drinking water sources = 0.01 liters/day = mean consumption of trophic level 3 fish by regional sport fishers of regionally caught freshwater fish =</pre>
<u>FC_{TL4}</u>	<u>0.0036 kg/day</u> <u>mean consumption of trophic level 4 fish by regional</u> <u>sport fishers of regionally caught freshwater fish =</u>
BAF _{HHTL3}	<u>0.0114 kg/day</u> ≡ human health bioaccumulation factor for edible portion of trophic level 3 fish, as derived using the BAF methodology in 35 Ill. Adm. Code 302.570
BAF _{HHTL4}	<u>human health bioaccumulation factor for edible</u> <u>portion of trophic level 4 fish, as derived using the</u> BAF methodology in 35 Ill. Adm. Code 302.570
ed at 46 Ill. Re	eg, effective)

3638

3639 (Source: Amendee

3640

3641Section 302.590 Procedures for Determining the Lake Michigan Basin Human Health 3642Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health 3643Nonthreshold Value (LMHHNV)

3644

3645A LMHHNC or LMHHNV must-shall be derived for those toxic substances for which any 3646exposure, regardless of extent, carries some risk of damage from cancer or a nonthreshold toxic 3647mechanism. For single or combinations of substances, a risk level of 1 in 100,000 (or 10⁻⁵) must 3648shall be used for the purpose of determination of a LMHHNC or LMHHNV.

ILLINOIS REGISTER 1 Motice

POLLUTION CONTROL BOARD

3649		
3650 3651	a)	Minimum data requirements. Minimal experimental or epidemiological data requirements are incorporated in the cancer classification determined by USEPA
3652		at Appendix C II A to 40 CFR 132, incorporated by reference at 35 Ill. Adm.
3653		Code 301.106 <u>Section 302.510</u> .
3654		
3655	b)	Principles for development of criteria or values:
3656		
3657		1) Animal data are fitted to a linearized multistage computer model (Global
3658		1986 in "Mutagenicity and Carcinogenicity Assessment for 1,
3659		3-Butadiene ² September 1985 EPA/600/8-85/004A, incorporated by
3660		reference at 35 Ill. Adm. <u>CodeSectionCode</u> 301.106 or scientifically
3661		justified equivalents). The upper-bound 95 percent confidence limit on
3662		risk at the 1 in 100,000 risk level must hallmust be used to calculate a risk
3663		associated dose (RAD); and
3664		
3665		2) A species scaling factor must <u>shall</u> be used to account for differences
3666		between test species and humans. Milligrams per surface area per day is
3667		an equivalent dose between species. All doses presented in mg/kg
3668		bodyweight will be converted to an equivalent surface area dose by raising
3669		the mg/kg dose to the 3/4 power.
3670		
3671	c)	Determining the risk associated dose (RAD). The RAD must-shall be calculated
3672		using the following equation:
3673		
3674		$RAD = 0.00001 / q_1 *$
3675		
3676		Where:
3677		
3678		RAD = risk associated dose in milligrams of toxicant or combinations of
3679		toxicants per kilogram body weight per day (mg/kg/day)
3680		$0.00001 (1 \times 10^{-5})$ = incremental risk of developing cancer equal to 1 in 100,000
3681		
3682		q ₁ * — slope factor (mg/kg/day) ⁻¹
3683		

ILLINOIS REGISTER 1 Motice

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

RAD	Ξ	risk associated dose in milligrams of toxicant or combinations of toxicants per kilogram body weight per day (mg/kg/day)
<u>0.00001 (1 X 10⁻⁵)</u>	=	incremental risk of developing cancer equal to 1 in 100,000
<u>q1</u> *	Ξ	slope factor (mg/kg/day)-1
RAD	=	risk associated dose in milligrams of toxicant or combinations of toxicants per kilogram body weight per day (mg/kg/day)
<u>0.00001 (1 X 10(-5))</u>	=	incremental risk of developing cancer equal to 1 in 100,000
<u>q_*</u>	=	slope factor (mg/kg/day)-1

3684

3685d)Determining the Lake Michigan Basin Human Health Nonthreshold Criterion3686(LMHHNC) or the Lake Michigan Basin Human Health Nonthreshold Value3687(LMHHNV):

3688	
3689	LMHHNC or LMHHNV =
3690	
3691	$\{ RAD x BW \} / \{ WC + [(FC_{TL3} x BAF_{HHTL3}) + (FC_{TL4} x BAF_{HHTL4})] \}$
3692	
3693	Where:
3694	
3695	LMHHNC or LMHHNV is in milligrams per liter (mg/L)
3696	
3697	RAD = risk associated dose of a substance or combination of substances in
3698	milligrams per day (mg/d) which is associated with a lifetime cancer risk level
3699	equal to a ratio of 1 to 100,000
3700	
3701	BW = weight of an average human (BW = 70 kg)
3702	
3703	WC = per capita water consumption for surface waters classified as public water
3704	supplies = 2 liters/day, or per capita incidental daily water ingestion for surface
3705	waters not used as human drinking water sources = 0.01 liters/day
3706	

		POLLUTION CONTROL BOARD				
		NOTICE OF PROPOSED AMENDMENTS				
3707 3708 3709		mean consumption of trophic level 3 of regionally caught freshwater fish)36 kg/day				
3710 3711 3712		= mean consumption of trophic level 4 of regionally caught freshwater fish H4 kg/day				
3713 3714 3715	BAF _{HHTL3} , BAF _{HHTL4} = bioaccumulation factor for trophic levels 3 and 4 as derived in <u>35 III. Adm. Code</u> Section 302.570					
5,10		LMHHNC or LMHHNV is in milligrams per liter (mg/L)				
		RAD \equiv risk associated dose of a substance or combination of substances in milligrams per day (mg/d) which is associated with a lifetime cancer risk level equal to a ratio of 1 to 100,000				
		<u>BW</u> = weight of an average human (BW = 70 kg) <u>WC</u> = per capita water consumption for surface waters classified as public water supplies = two liters/day, or per capita incidental daily water ingestion for surface waters not used as human drinking water sources = 0.01 liters/day				
		$\underline{FC_{TL3}} \equiv \underline{\text{mean consumption of trophic level 3 of regionally caught}}_{\underline{\text{freshwater fish} = 0.0036 \text{ kg/day}}$				
		$\frac{FC_{TL4}}{freshwater fish = 0.0114 \text{ kg/day}} = \frac{\text{mean consumption of trophic level 4 of regionally caught}}{freshwater fish = 0.0114 \text{ kg/day}}$				
		$\frac{\text{BAF}_{\text{HHTL3,}}}{\text{BAF}_{\text{HHTL4}}} \stackrel{=}{=} \frac{\text{bioaccumulation factor for trophic levels 3 and 4 as}}{\text{derived in 35 Ill. Adm. Code 302.570}}$				
3718 3719 Sectior 3720 Values	n 302.595 Lis	ended at 46 Ill. Reg, effective) sting of Bioaccumulative Chemicals of Concern, Derived Criteria and				
3721 3722	a) The A	gency must-shall maintain a listing of toxicity criteria and values derived				
2522	,					

3722a)The Agency must-shall maintain a listing of toxicity criteria and values derived3723underpursuant tounder this Subpart. This list must shall be made available to the3724public and updated whenever a new criterion or value is derived and must shall be

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

	3725	published when updated in the Illinois Register.
	3726	
	3727 b)	A criterion or value published <u>underpursuant tounder</u> subsection (a) of this
	3728	Section may be proposed to the Board for adoption as a numeric water quality
•	3729	standard.
	3730	
L	3731 c)	The Agency must-shall maintain for inspection all information including, but not
	3732	limited to, assumptions, toxicity data and calculations used in the derivation of
	3733	any toxicity criterion or value listed pursuant to subsection (a) of this Section until
I	3734	adopted by the Board as a numeric water quality standard.
	3735	adopted by the Board as a numeric water quanty standard.
I		a Amandad at 46 III Dag affrative
I		e: Amended at 46 Ill. Reg, effective)
	3737	
		TF: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA
	3739	
		01 Scope and Applicability
	3741	
	1	contains the procedures for determining the water quality criteria set forth in 35 Ill.
		ctionsCode 302.210(a), (b) and (c) and 302.410(a), (b) and (c).
	3744	
	3745 (Sourc	e: Amended at 46 Ill. Reg, effective)
	3746	
	3747Section 302.6	03 Definitions
	3748	
	3749As used in this	s Subpart, the following terms-shall have the meanings specified.
	3750	
	3751	"Bioconcentration" means an increase in concentration of a chemical and its
	3752	metabolites in an organism (or its specified tissues thereof) relative to the
•	3753	concentration of the chemical in the ambient water acquired through contact with
	3754	the water alone.
	3755	
	3756	
	3757	"Carcinogen" means a chemical which causes an increased incidence of benign or
	3758	malignant neoplasms, or a statistically significant decrease in the latency period
	3759	between exposure and onset of neoplasms in at least one mammalian species or
	3760	man through epidemiological or clinical studies.
	3761	
	3762	

3763	"EC-50" means the concentration of a substance or effluent which causes a given
3764	effect to 50% of the exposed organisms in a given time period.
3765	
3766	
3767	"LC-50" means the concentration of a toxic substance or effluent which is lethal
3768	to 50% of the exposed organisms in a given time period.
3769	
3770	
3771	"LOAEL" or "Lowest Observable Adverse Effect Level" means the lowest tested
3772	concentration of a chemical or substance which produces a statistically significant
3773	increase in frequency or severity of non-overt adverse effects between the
3774	exposed population and its appropriate control.
3775	
3776	
3777	"MATC" or "Maximum Acceptable Toxicant Concentration" means the value
3778	obtained by calculating the geometric mean of the lower and upper chronic limits
3779	from a chronic test. A lower chronic limit is the highest tested concentration
3780	which did not cause the occurrence of a specified adverse effect. An upper
3781	chronic limit is the lowest tested concentration which did cause the occurrence of
3782	a specified adverse effect and above which all tested concentrations caused such
3783	an occurrence.
3784	
3785	
3786	"NOAEL" or "No Observable Adverse Effect Level" means the highest tested
3787	concentration of a chemical or substance which does not produce a statistically
3788	significant increase in frequency or severity of non-overt adverse effects between
3789	the exposed population and its appropriate control.
3790	
3791	
3792	"Resident or Indigenous Species" means species which currently live a substantial
3793	portion of their lifecycle or reproduce in a given body of water, or which are
3794	native species whose historical range includes a given body of water.
3795	
3796	
3797	(Source: Amended at 46 Ill. Reg, effective)
3798	
3799Section	n 302.604 Mathematical Abbreviations
3800	

NOTICE OF PROPOSED AMENDMENTS

3801This Subpart uses <u>the Thethe</u> following mathematical abbreviations have been used in this 3802Subpart:

3803

- 3804 exp x base of the natural logarithm, e, raised to x-power
- 3805 ln x natural logarithm of x
- 3806 log x logarithm to the base 10 of x
- 3807 A**B A raised to the B-power
- 3808 SUM(x) summation of the values of x

3809

 $\begin{array}{ll} \underline{exp \ x} \\ \underline{ln \ x} \\ \underline{log \ x} \\ \underline{log \ x} \\ \underline{log \ x} \\ \underline{A^{**B}} \\ \underline{SUM(x)} \end{array} \begin{array}{ll} \underline{base \ of \ the \ natural \ logarithm, \ e, \ raised \ to \ x-power} \\ \underline{log \ x} \\ \underline{log \ x} \\ \underline{log \ x} \\ \underline{summation \ of \ the \ base \ 10 \ of \ x} \\ \underline{summation \ of \ the \ values \ of \ x} \end{array}$

3810

 3811
 (Source: Amended at 46 Ill. Reg. ____, effective _____)

3812

3813Section 302.606 Data Requirements

3814

3815The Agency must-shall review, for validity, applicability and completeness, data used in 3816calculating criteria. To the extent available, and to the extent not otherwise specified, testing 3817 procedures, selection of test species and other aspects of data acquisition must be according to 3818methods published by USEPA or nationally recognized standards organizations, including but 3819not limited to those methods found in "Standard Methods", as incorporated by reference in 35 Ill. 3820Adm. Code 301.106, or approved by the American Society for Testing and Materials as 3821incorporated by reference in 35 Ill. Adm. Code 301.106. 3822 3823 (Source: Amended at 46 Ill. Reg. _____, effective _____ 3824 3825Section 302.612 Determining the Acute Aquatic Toxicity Criterion for an Individual 3826Substance - General Procedures 3827 3828 A chemical specific Acute Aquatic Toxicity Criterion (AATC) is calculated using a) 3829 procedures specified in 35 Ill. Adm. CodeSectionsCode 302.615 and

3830<u>302.618302.681302.618</u> if acute toxicity data are available for at least five (5)3831resident or indigenous species from five (5)-different North American genera of3832freshwater organisms including representatives of the following taxa:3833

3834		1) Representatives of two families in the Class Osteichthyes (Bony Fishes).
3835		
3836		2) The family Daphnidae.
3837		
3838		3) A benthic aquatic macroinvertebrate.
3839		
3840		4) A vascular aquatic plant or a third family in the Phylum Chordata which
3841		may be from the Class Osteichthyes.
3842		
3843	b)	If data are not available for resident or indigenous species, data for non-resident
3844		species may be used if the non-resident species is of the same family or genus and
3845		has a similar habitat and environmental tolerance. The procedures of 35 Ill. Adm.
3846		<u>CodeSectionCode</u> 302.615 must be used to obtain an AATC for individual
3847		substances whose toxicity is unaffected by ambient water quality characteristics.
3848		The procedures of 35 Ill. Adm. <u>CodeSectionCode</u> 302.618 must be used if the
3849		toxicity of a substance is dependent upon some other water quality characteristic.
3850	ς.	
3851	c)	If data are not available that meet the requirements of subsection (a), an AATC is
3852		calculated by obtaining at least one EC-50 or LC-50 value from both a daphnid
3853		species and either fathead minnow or bluegill. If there are data available for any
3854		other North American freshwater species, they must also be included. An AATC
3855		is calculated by dividing the lowest Species Mean Acute Value (SMAV), as
3856		determined according to 35 Ill. Adm. <u>CodeSectionCode</u> 302.615, by 10.
3857	(0	
3858	(Sourc	ce: Amended at 46 Ill. Reg, effective)
3859 2860Sect	ion 202 ((15. Determining the Acute Acutic Toxisity Criterion — Toxisity Independent
3861 of W		515 Determining the Acute Aquatic Toxicity Criterion — Toxicity Independent
3862	aler Ch	emistry
	e acute to	xicity of the chemical has not been shown to be related to a water quality
		, including but not limited to, hardness, pH, temperature, etc., the AATC is
		using the procedures below.
3866		
3867	a)	For each species for which more than one acute value is available, the Species
3868	/	Mean Acute Value (SMAV) is calculated as the geometric mean of the acute
3869		values from all tests.
3870		
3871	b)	For each genus for which one or more SMAVs are available, the Genus Mean

NOTICE OF PROPOSED AMENDMENTS

3872 Acute Value (GMAV) is calculated as the geometric mean of the SMAVs 3873 available for the genus. 3874 3875 The GMAVs are ordered from high to low. c) 3876 Ranks (R) are assigned to the GMAVs from "41" for the lowest to "N" for the 3877 d) 3878 highest. If two or more GMAVs are identical, successive ranks are arbitrarily 3879 assigned. 3880 3881 The cumulative probability, P, is calculated for each GMAV as R/(N + 4). e) 3882 3883 f) The GMAVs to be used in the calculations of subsection (g) must be those with 3884 cumulative probabilities closest to 0.05. If there are less than 59 GMAVs in the 3885 total data set, the values utilized must be the lowest obtained through the ranking 3886 procedures of subsections (c) and (d). "T" is the number of GMAV's which are to 3887 be used in the calculations of subsection (g). T is equal to 4 when the data set 3888 includes at least one representative from each of the five taxa in 35 Ill. Adm. 3889 CodeSectionCode 302.612 and a representative from each of the three taxa listed 3890 below. T is equal to 3 when the data includes at least one representative from 3891 each of the five taxa in 35 Ill. Adm. CodeSectionCode 302.612 and from one or 3892 two of the taxa listed below. T is equal to 2 when the data set meets the minimum 3893 requirements of 35 Ill. Adm. CodeSectionCode 302.612 but does not include 3894 representatives from any of the three taxa listed below. When toxicity data on any 3895 of the three taxa listed below are available, they must be used along with the 3896 minimum data required pursuant to 35 Ill. Adm. CodeSectionCode 302.612. 3897 3898 A benthic crustacean, unless onesuchone was used under pursuant to 35 1) 3899 Ill. Adm. CodeSectionCode 302.612(a)(3), in which case an insect must 3900 be usedutilizedused. 3901 3902 2) A member of a phylum not used in subsections (a), (b) or (f)(1). 3903 3904 3) An insect from an order not already represented. 3905 3906 Using the GMAVs and T-value identified under-pursuant to subsection (f) and the g) 3907 Ps calculated underpursuant tounder subsection (e), the Final Acute Value (FAV) 3908 and the AATC are calculated as: 3909

ILLINO	IS REGISTER 1 st Notice JCAR350302-2207052r01
	POLLUTION CONTROL BOARD
	NOTICE OF PROPOSED AMENDMENTS
3910 3911 3912	$\frac{FAV = \exp(A) \text{ and}}{AATC = FAV/2}$
	$\frac{FAV}{AATC} \stackrel{=}{=} \frac{exp(A) \text{ and}}{FAV/2}$
3913 3914 3915	Where:
3916 3917	A = L + 0.2236 S;
3918 3919	L = [SUM(1n GMAV) - S(SUM(P**0.5))]/T; and
3920 3921 3922	S = [[SUM((1n GMAV)**2) - ((SUM(1n GMAV))**2)/T]/[SUM(P) - ((SUM(P**0.5))**2)/T]]**0.5.
	$ \frac{A}{L} = \frac{L + 0.2236 \text{ S};}{[SUM(1n \text{ GMAV}) - S(SUM(P^{**}0.5))]/T; \text{ and}} \\ \frac{S}{L} = \frac{[SUM((1n \text{ GMAV})^{**}2) - ((SUM(1n \text{ GMAV})^{**}2) - ((SUM(1n \text{ GMAV})^{**}2)/T]/[SUM(P) - ((SUM(P^{**}0.5))^{**}2)/T]] = 10000000000000000000000000000000000$
3923 3924 h	
3925 3926	commercial or recreational activities, or prevent disruptions of the waterbody's ecosystem, including but not limited to loss of species diversity or a shift to a
3927 3928 3929 3930	biotic community dominated by pollution-tolerant species diversity of a sinit to a biotic community dominated by pollution-tolerant species, will not be protected by the calculated FAV, then the EC-50 or LC-50 for that species is used as the FAV.
1	Source: Amended at 46 Ill. Reg, effective)
	302.618 Determining the Acute Aquatic Toxicity Criterion - Toxicity Dependent er Chemistry

39340II 3935

3936If data are available to show that a relationship exists between a water quality characteristic 3937(WQC) and acute toxicity to two or more species, an Acute Aquatic Toxicity Criterion (AATC) 3938may be calculated. The best documented relationship is that between the water quality 3939characteristic, hardness and acute toxicity of metals. Although this relationship between 3940hardness and acute toxicity is typically non-linear, it can be linearized by a logarithmic

ILLINOIS REGISTER 1st Notice

3954

3963

3969

3972

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

3941transformation (i.e. for any variable, K, f(K) = logarithm of K) of the variables and plotting the 3942logarithm of hardness against the logarithm of acute toxicity. Similarly, relationships between 3943acute toxicity and other water quality characteristics, such as pH or temperature, may require a 3944transformation, including no transformation (i.e. for any variable, K, f(K) = K) for one or both 3945variables to obtain least squares linear regression of the transformed acute toxicity values on the 3946transformed values of the water quality characteristic. An AATC is calculated using the 3947following procedures:

- 3948
 3949 a) For each species for which acute toxicity values are available at two or more
 3950 different values of the water quality characteristic, a linear least squares
 3951 regression of the transformed acute toxicity (TAT) values on the transformed
 3952 water quality characteristic (TWQC) values is performed to obtain the slope of the
 3953 line describing the relationship.
- 3955 b) Each of the slopes determined pursuant to subsection (a) is evaluated as to 3956 whether or not it is statistically valid, taking into account the range and number of 3957 tested values of the water quality characteristic and the degree of agreement 3958 within and between species. If slopes are not available for at least one fish and 3959 one invertebrate species, or if the available slopes are too dissimilar, or if too few 3960 data are available to define the relationship between acute toxicity and the water 3961 quality characteristic, then the AATC must be calculated using the procedures in 3962 35 Ill. Adm. CodeSectionCode 302.615.
- 3964c)Normalize the TAT values for each species by subtracting W, the arithmetic mean3965of the TAT values of a species from each of the TAT values used in the3966determination of the mean, such that the arithmetic mean of the normalized TAT3967values for each species individually or for any combination of species is zero3968(0.0).
- 3970d)Normalize the TWQC values for each species using X, the arithmetic mean of the3971TWQC values of a species, in the same manner as in subsection (c).
- 3973 e) Group all the normalized data by treating them as if they were from a single
 3974 species and perform at least squares linear regression of all the normalized TAT
 3975 values on the corresponding normalized TWQC values to obtain the pooled acute
 3976 slope, V.
 3977
- 3978 f) For each species, the graphical intercept representing the species TAT intercept,

3979		f(Y), at a specific selected value, Z, of the WQC is calculated using the equation:
3980		
3981		f(Y) = W - V(X - g(Z))
3982		
3983		Where:
3984		
3985		f () is the transformation used to convert acute toxicity values to TAT
3986		values;
3987		
3988		Y is the species acute toxicity intercept or species acute intercept;
3989		
3990		W is the arithmetic mean of the TAT values as specified in subsection (c);
3991		
3992		
3993		V is the pooled acute slope as specified in subsection (e);
3994		v is the pooled dedice slope as specified in subsection (c),
3995		X is the arithmetic mean of the TWQC values as specified in subsection
3996		(d);
3997		(u);
3998		g () is the transformation used to convert the WQC values to TWQC
3999		• • •
4000		values; and
		Z is a selected value of the WOC
4001		Z is a selected value of the WQC.
4002	``	
4003	g)	For each species, determine the species acute intercept, Y, by carrying out an $f(X)$. For each species $f(X)$, $f(X)$
4004		inverse transformation of the species TAT value, $f(Y)$. For example, in the case
4005		of a logarithmic transformation, $Y =$ antilogarithm of (f (Y)); or in the case where
4006		no transformation is used, $Y = f(Y)$.
4007		
4008	h)	The Final Acute Intercept (FAI) is derived by using the species acute intercepts,
4009		obtained from subsection (g), in <u>compliance accordance compliance</u> with the
4010		procedures described in 35 Ill. Adm. <u>CodeSectionCode</u> 302.615(b) through (g),
4011		with the word "value" replaced by the word "intercept". Note that in this
4012		procedure geometric means and natural logarithms are always used.
4013		
4014	i)	The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two.
4015		
4016	j)	The AATC at any value of the WQC, denoted by WQCx, is calculated using the

4017		terms defined in subsection (f) and the equation:
4018		
4019		$AATC = \exp[V (g(WQCx) - g(Z)) + f (AAI)].$
4020		
4021	(Source	e: Amended at 46 Ill. Reg, effective)
4022		
4023Section	n 302.62	21 Determining the Acute Aquatic Toxicity Criterion - Procedure for
4024Combi	ination	s of Substances
4025		
4026An AA	TC for	any combination of substances (including effluent mixtures) must be determined
4027by the	followi	ng toxicity testing procedures:
4028		
4029	a)	Not more than 50% of test organisms from the most sensitive sensitive sensitive
4030		species tested may exhibit mortality or immobility after a 48-hour test for
4031		invertebrate or a 96-hour test for fishes.
4032		
4033	b)	Three resident or indigenous species of ecologically diverse taxa must be tested
4034		initially. If resident or indigenous species are not available for testing,
4035		non-resident species may be used if the non-resident species is of the same family
4036		or genus and has a similar habitat and environmental tolerance.
4037		
4038	(Source	e: Amended at 46 Ill. Reg, effective)
4039		
4040Section 302.627 Determining the Chronic Aquatic Toxicity Criterion for an Individual		
4041Substance - General Procedures		
4042		
4043	a)	A chemical-specific Chronic Aquatic Toxicity Criterion (CATC) is calculated
4044		using procedures specified in subsection (b) when chronic toxicity data are
4045		available for at least five species from five different North American genera of
4046		freshwater organisms, including representatives from the following taxa:
4047		
4048		1) Representatives of two families in the Class Osteichthyes (Bony Fishes).
4049		
4050		2) The family Daphnidae.
4051		
4052		3) A benthic aquatic macroinvertebrate.
4053		
4054		4) An alga (96-hour test) or a vascular aquatic plant.

4068 4069

4070

4071

4072

4073

4074

4075

4076 4077

4078

4079

4080

4081

4082 4083

4084

4085

4086 4087

4088

4089 4090

4091 4092

POLLUTION CONTROL BOARD

- 40554056b)A CATC is derived in the same manner as the FAV in 35 Ill. Adm.4057CodeSectionsCode 302.615 or 302.618 by substituting CATC for FAV or FAI,4058chronic for acute, MATC for LC-50, SMCV (Species Mean Chronic Value) for4059SMAV, and GMCV (Genus Mean Chronic Value) for GMAV.4060
- 4061c)If data are not available to meet the requirements of subsection (a), a CATC is4062calculated by dividing the FAV by the highest acute-chronic ratio obtained from4063at least one fish and one invertebrate species. The acute-chronic ratio for a4064species equals the acute toxicity concentration from data considered under 35 Ill.4065Adm. CodeSectionsCode 302.612 through 302.618, divided by the chronic4066toxicity concentration from data calculated under subsections (a) and (b) subject4067to the following conditions:
 - If the toxicity of a substance is related to any water quality characteristic (WQC), the acute-chronic ratio must be based on acute and chronic toxicity data obtained from organisms exposed to test water with WQC values that are representative of the WQC values of the waterbody under consideration. Preference under this subsection must be given to data from acute and chronic tests done by the same author or in the same reference in order to increase the likelihood of comparable test conditions.
 - 2) If the toxicity of a substance is unrelated to water quality parameters, the acute-chronic ratio may be derived from any acute and chronic test on a species regardless of the similarity in values of those water quality parameters. Preference under this subsection must be given to data from acute and chronic tests done on the same organisms or their descendants.
 - 3) If there is more than one acute-chronic ratio for a species, a geometric mean of the ratio is calculated, corrected for the relationship of toxicity to water quality parameters.
 - 4) If the acute and chronic toxicity data indicate that the acute-chronic ratio varies with changes in water quality parameters, the acute-chronic ratio used over specified values of the water quality parameters must be based on the ratios at water quality parameter values closest to those specified.
 - 5) If acute and chronic toxicity data are unavailable to determine an

ILLINOIS REGISTER 1st Notice

1

POLITION CONTROL BO	VBU
TOPPON CONTROL DO	TTD

NOTICE OF PROPOSED AMENDMENTS

	4093		acute-chronic ratio for at least two North American freshwater species, a
	4094		ratio of 25 <u>mustshallmust</u> be used.
	4095		
		d)	If a resident or indigenous species whose presence is necessary to sustain
	4097		commercial or recreational activities, or prevent disruptions of the waterbody's
	4098		ecosystem, including but not limited to loss of species diversity or a shift to a
	4099		biotic community dominated by pollution-tolerant species, will not be protected
	4100		by the calculated CATC, then the MATC for that species is used as the CATC.
	4101		
	4102	(Source	e: Amended at 46 Ill. Reg, effective)
	4103		
			30 Determining the Chronic Aquatic Toxicity Criterion - Procedure for
		nations	s of Substances
	4106		
			ny combination of substances (including effluent mixtures) may be determined by
		v testing	procedures pursuant to the following:
ī	4109	,	
		a)	A-No combination of substances must not may exceed concentrations greater than
	4111		a NOAEL as determined for the most sensitive of the species tested.
	4112	• 、	
		b)	Three resident or indigenous species of ecologically diverse taxa must be tested
	4114		initially. If resident or indigenous species are not available for testing,
	4115		non-resident species may be used if the non-resident species is of the same family
	4116		or genus and has a similar habitat and environmental tolerance.
	4117		
ī	4118	(6	$(A_{1}, A_{2}, A_{3}) = \frac{1}{2} + $
I	4119	(Source	e: Amended at 46 Ill. Reg, effective)
	4120 4121Section	. 202 (22. The Wild and Domestic Animal Dustastion Cuitanian
		1 302.03	33 The Wild and Domestic Animal Protection Criterion
	4122 4122The W	1d and	Domestic Animal Drotaction Criterion (WDADC) is the concentration of a
			Domestic Animal Protection Criterion (WDAPC) is the concentration of a
			ch if not exceeded protects Illinois wild and domestic animals from adverse s functional impairment or pathological lesions, resulting from ingestion of surface
	-		State and from ingestion of aquatic organisms taken from surface waters of the
	4120waters 4127State.	or the s	state and from ingestion of aquatic organisms taken from surface waters of the
	4127State. 4128		
	4128 4129	a)	For those substances for which a NOAEL has been derived from studies of
	7127	a)	For mose substances for which a NOALE has been derived from studies of

4130 mammalian or avian species exposed to the substance via oral routes including

4131		gavage, the lowest NOAEL among species must be used in calculating the
4132		WDAPC. Additional considerations in selecting NOAEL include:
4133		
4134		1) If the NOAEL is given in milligrams of toxicant per liter of water
4135		consumed (mg/L), prior to calculating the WDAPC, the NOAEL must be
4136		multiplied by the daily average volume of water consumed by the test
4137		animals in liters per day (L/d) and divided by the average weight of the
4138		test animals in kilograms (kg).
4139		
4140		2) If the NOAEL is given in milligrams of toxicant per kilogram of food
4141		consumed (mg/kg), prior to calculating the WDAPC, the NOAEL must be
4142		multiplied by the average amount of food in kilograms consumed daily by
4143		the test animals (kg/d) and divided by the average weight of the test
4144		animals in kilograms (kg).
4145		
4146		3) If the animals used in a study were not exposed to the toxicant each day of
4147		the test period, the NOAEL must be multiplied by the ratio of days of
4148		exposure to the total days in the test period.
4149		
4150		4) If more than one NOAEL is available for the same animal species, the
4151		geometric mean of the NOAELs must be used to calculate the WDAPC.
4152		
4153	b)	For those substances for which a NOAEL is not available but the lowest observed
4154		adverse effect level (LOAEL) has been derived from studies of animal species
4155		exposed to the substance via oral routes including gavage, one-tenth of the
4156		LOAEL must shall must be substituted for the NOAEL.
4157	``	
4158	c)	The LOAEL must be selected in the same manner as that specified for the
4159		NOAEL in subsection (a).
4160	.1)	$\mathbf{T}_{\mathbf{L}} = \mathbf{W}_{\mathbf{L}} \mathbf{D}_{\mathbf{L}} $
4161	d)	The WDAPC, measured in milligrams per liter (mg/L), is calculated according to
4162		the equation:
4163		WDADC = [0.1 NOAEL + Wt]/[W + (E + DCE)]
4164 4165		WDAPC = [0.1 NOAEL x Wt]/[W + (F x BCF)]
4165 4166		Where:
4166		
410/		

	POLLUTION CONTROL BOARD
	NOTICE OF PROPOSED AMENDMENTS
4168 4169 4170 4171	NOAEL is derived from mammalian or avian studies as specified in subsections (a) and (b), and is measured in units of milligrams of substance per kilogram of body weight per day (mg/kg-d);
4172 4173	Wt = Average weight in kilograms (kg) of the test animals;
4173 4174 4175 4176	W = Average daily volume of water in liters consumed per day (L/d) by the test animals;
4177 4178 4179	F = Average daily amount of food consumed by the test animals in kilograms (kg/d);
4180 4181 4182 4183	BCF = Aquatic life Bioconcentration Factor with units of liter per kilogram (L/kg), as derived in <u>35 Ill. Adm. Code</u> Sections 302.660 through 302.666; and
4185 4184 4185 4186	The 0.1 represents an uncertainty factor to account for species variability.
	NOAEL is derived from mammalian or avian studies as specified in subsections (a) and (b), and is measured in units of milligrams of substance per kilogram of body weight per day (mg/kg-d);Wt= Average weight in kilograms (kg) of the test animals;W= Average daily volume of water in liters consumed per day (1/d) by the test animals;F= Average daily amount of food consumed by the test animals in kilograms (kg/d);BCF= Aquatic life Bioconcentration Factor with units of liter per kilogram (L/kg), as derived in 35 Ill. Adm. Code 302.660 through 302.666; and
4187	The 0.1 represents an uncertainty factor to account for species variability.
4188 4189 4190 4191	e) If no studies pertaining to the toxic substance in question can be found by the Agency, no criterion can be determined.
4192	(Source: Amended at 46 Ill. Reg, effective)

	4195 4196The Ac 4197daily fo	cceptabl	45 Determining the Acceptable Daily Intake le Daily Intake (ADI) is the maximum amount of a substance which, if ingested time, results in no adverse effects to humans. Subsections (a) through (e) list, in eference, methods for determining the acceptable daily intake.
	4200	a)	The lowest of the following ADI values:
	4201 4202 4203 4204 4205 4206 4207		1) For-those substances which are listed with a maximum contaminant level in 40 CFR 141, incorporated by reference in 35 Ill. Adm. Code 301.106, or in 35 Ill. Adm. Code 611, the ADI equals the product of multiplying the maximum contaminant level given in milligrams per liter (mg/L) by 2 liters per day (L/d).
	4208 4209 4210 4211 4212 4213		2) For those substances which are listed with a maximum allowable concentration standard in 35 Ill. Adm. Code:- Subtitle F, the acceptable daily intake equals the product of multiplying the public health enforcement standard given in milligrams per liter (mg/L) by 2 liters per day (L/d).
	4213 4214 4215 4216	b)	For-those substances for which a no observed adverse effect level (NOAEL-H) for humans exposed to the substance in drinking water has been derived, the acceptable daily intake equals the product of multiplying one-tenth of the
	4217 4218 4219 4220		NOAEL-H given in milligrams of toxicant per liter of water consumed $(mg/L)_{\underline{a}}$ by 2 liters per day (L/d). The lowest NOAEL-H must be used in the calculation of the acceptable daily intake.
	4221 4222 4223 4224 4225	c)	For-those substances for which the lowest observed adverse effect level (LOAEL-H) for humans exposed to the substance in drinking water has been derived, one-hundredth of the LOAEL-H may be substituted for the NOAEL-H in subsection (b).
	4226 4227 4228 4229 4230	d)	For-those substances for which a no observed adverse effect level (NOAEL-A) has been derived from studies of mammalian test species exposed to the substance via oral routes including gavage, the acceptable daily intake equals the product of multiplying 1/100 of the NOAEL-A given in milligrams toxicant per day per kilogram of test species weight (mg/kg-d) by the average weight of an

4231		adult human of 70 kilograms (kg). The lowest NOAEL-A among animal species
4232		must be used in the calculation of the acceptable daily intake. Additional
4233		considerations in selecting the NOAEL-A include:
4234		
4235		1) If the NOAEL-A is given in milligrams of toxicant per liter of water
4236		consumed (mg/L) then, prior to calculating the acceptable daily intake, the
4237		NOAEL-A must be multiplied by the daily average volume of water
4238		consumed by the mammalian test species in liters per day (L/d) and
4239		divided by the average weight of the mammalian test species in kilograms
4240		(kg).
4241		
4242		2) If the NOAEL-A is given in milligrams of toxicant per kilogram of food
4243		consumed (mg/kg), prior to calculating the acceptable daily intake the
4244		NOAEL-A must be multiplied by the average amount in kilograms of food
4245		consumed daily by the mammalian test species (kg/d) and divided by the
4246		average weight of the mammalian test species in kilograms (kg).
4247		
4248		3) If the mammalian test species were not exposed to the toxicant each day of
4249		the test period, the NOAEL-A must be multiplied by the ratio of days of
4250		exposure to the total days of the test period.
4251		
4252		4) If more than one NOAEL-A is available for the same mammalian test
4253		species, the geometric mean of the NOAEL-As must be used.
4254		
4255	e)	For-those substances for which a NOAEL-A is not available but the lowest
4256	,	observed adverse effect level (LOAEL-A) has been derived from studies of
4257		mammalian test species exposed to the substance via oral routes including
4258		gavage, one-tenth of the LOAEL-A may be substituted for the NOAEL-A in
4259		subsection (d). The LOAEL-A must be selected in the same manner as that
4260		specified for the NOAEL-A in subsection (d).
4261		
4262	f)	If no studies pertaining to the toxic substance in question can be found by the
4263	,	Agency, no criterion can be determined.
4264		
4265		
4266	(Sourc	e: Amended at 46 Ill. Reg, effective)
4267	`	
4268Section 302.648 Determining the Human Threshold Criterion		

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARD

4269	
	ITC is calculated according to the equation:
4271	
4272	$HTC = ADI/[W + (F \times BCF)]$
4273	
4274	where:
4275	
4276	HTC = Human health protection criterion in milligrams per liter (mg/L);
4277	
4278	ADI = Acceptable daily intake of substance in milligrams per day (mg/d)
4279	as specified in <u>35 Ill. Adm. Code</u> Section 302.645;
4280	
4281	W = Per capita daily water consumption equal to 2 liters per day (L/d)
4282	for surface waters at the point of intake of a public or food processing
4283	water supply, or equal to 0.01 liters per day (L/d) which represents
4284	incidental exposure through contact or ingestion of small volumes of wate
4285	while swimming or during other recreational activities for areas which are
4286	determined to be public access areas under 35 Ill. Adm. Codepursuant to
4287	Section 302.102 (b)(3), or 0.001 liters per day (L/d) for other waters;
4288	
4289	F = Assumed daily fish consumption in the United States equal to 0.020
4290	kilograms per day (kg/d); and
4291	DCE A motion Disconstruction Exchange its efficiency
4292	BCF = Aquatic organism Bioconcentration Factor with units of liter per
4293 4294	kilogram (L/kg) as derived in <u>35 Ill. Adm. Code</u> Sections 302.660 through 302.666.
4294	302.000.
4295	HTC = Human health protection criterion in milligrams per liter
	$\frac{\text{mre}}{(\text{mg/L});} = \text{minimization protection effection in miningrams per neuronal states of the second st$
1	ADI = Acceptable daily intake of substance in milligrams per
	day (mg/d) as specified in 35 Ill. Adm. Code 302.645;
1	
	$\underline{W} \equiv Per capita daily water consumption equal to 2 liters per day (I (d) for surface vistors at the point of inteles of a$
	$\frac{day (L/d) \text{ for surface waters at the point of intake of a}}{public or food processing water supply, or equal to 0.01}$
	liters per day (L/d) which represents incidental exposure
	through contact or ingestion of small volumes of water
	while swimming or during other recreational activities
I	while swithining of during other recreational activities

ILLINOIS REGISTER 1st Notice

POLLUTION CONTROL BOARDNOTICE OF PROPOSED AMENDMENTSfor areas which are determined to be public access areas
under 35 III. Adm. Code Section 302.102 (b)(3), or 0.001
liters per day (L/d) for other waters; \underline{F} \equiv Assumed daily fish consumption in the United States
equal to 0.020 kilograms per day (kg/d); and \underline{BCF} \equiv Aquatic organism Bioconcentration Factor with units of
liter per kilogram (L/kg) as derived in 35 III. Adm. Code
302.660 through 302.666.

4296

4297 (Source: Amended at 46 Ill. Reg. ____, effective _____)

4298

4299Section 302.651 The Human Nonthreshold Criterion

4300

4301 The Human Nonthreshold Criterion (HNC) of a substance is that concentration or level of a 4302 substance at which humans are protected from an unreasonable risk of disease caused by a 4303 nonthreshold toxic mechanism as a result of incidental exposure to or ingestion of surface waters 4304 of the State and from ingestion of aquatic organisms taken from surface waters of the State. 4305 HNCs are derived for those toxic substances for which any exposure, regardless of extent, 4306 carries some risk of damage as specified in subsections (a) and (b).

4307

4308 4309 4310 4311	a)	For single substances, a risk level of one in one million (1 in 1,000,000) <u>mustshallmust</u> be allowed (i.e, considered acceptable) for the purposes of <u>determining</u> determination of <u>determining</u> an HNC.
4312 4313 4314	b)	For mixtures of substances, an additive risk level of one in one hundred thousand (1 in 100,000) <u>mustshallmust</u> be allowed (i.e, considered acceptable) for the purposes of <u>determining</u> determination of <u>determining</u> an HNC.
4315 4316 4317	(Sourc	e: Amended at 46 Ill. Reg, effective)

4318Section 302.654 Determining the Risk Associated Intake

4319

4320The Risk Associated Intake (RAI) is the maximum amount of a substance which if ingested daily 4321 for a lifetime is expected to result in the risk of one additional case of human cancer in a 4322population of one million. Where more than one carcinogenic chemical is present, the RAI 4323<u>mustshallmust</u> be based on an allowed additive risk of one additional case of cancer in a 4324population of one hundred thousand. The RAI must be derived as specified in subsections (a) 4325through (c).

$\begin{array}{c} 4326\\ 4327\\ 4328\\ 4329\\ 4330\\ 4331\\ 4332\\ 4333\\ 4334\\ 4335\\ 4336\\ 4337\\ 4338\\ 4339\\ 4340\\ 4341\\ 4342\\ 4343\\ 4340\\ 4341\\ 4342\\ 4343\\ 4344\\ 4345\\ 4344\\ 4345\\ 4346\\ 4347\\ 4348\\ 4349\\ 4350\\ 4351\\ 4352\\ 4353\\ 4354\\ \end{array}$	a) b)	For those substances for which a human epidemiologic study has been performed, the RAI equals the product of the dose from exposure in units of milligrams toxicant per kilogram body weight per day (mg/kg-d) that results in a 70-year lifetime cancer probability of one in one million, times the average weight of an adult human of 70 kilograms (kg). The resulting RAI is expressed in milligrams toxicant per day (mg/d). If more than one human epidemiologic study is available, the lowest exposure level resulting in a 70-year lifetime probability of cancer equal to a ratio of one in one hundred thousand must be used in calculating the RAI. In the absence of an epidemiologic study, for those toxic substances for which a carcinogenic potency factor (CPF) has been derived from studies of mammalian test species the risk associated intake is calculated from the equation: RAI = K/CPF Where: $\frac{RAI = Risk associated intake in milligrams per day (mg/d);}{K = A constant consisting of the product of the average weight ofan adult human, assumed to be 70 kg, and the allowed cancer risklevel of one in one million (1/1,000,000); andCPF = Carcinogenic Potency Factor is the risk of one additionalcancer per unit dose from exposure. The CPF is expressed in unitsof inverse milligrams per kilogram day (1/mg/kg d) as derived insubsections (b)(1) through (b)(7).$
4355		RAI = Risk associated intake in milligrams per day (mg/d);
		$\underline{\underline{K}} = \underline{\underline{K}} = \underline{$
		adult human, assumed to be 70 kg, and the allowed cancer risk level of one in one million (1/1,000,000); and
		$\underline{CPF} = \underline{Carcinogenic Potency Factor is the risk of one additional cancer}_{per unit dose from exposure. The CPF is expressed in units of$
		inverse milligrams per kilogram - day (l/mg/kg-d) as derived in

	ILLINOIS REGISTI	R1st Notice		JCAR350302-2207052r01
		POLLUTI	ON CONTROL BOA	RD
		NOTICE OF P	ROPOSED AMEND	MENTS
		subsection	ns (b)(1) through (b)(7).
4356	5			
4357	,	•		requirement criteria of 35 Ill.
4358		Adm. CodeSection	Code 302.606 mustsl	nallmust be used in calculating the
4359		CPF.		
4360				
4361	,			relationship developed in the same
4362				itagenicity and Carcinogenicity
4363				ated by reference in 35 Ill. Adm.
4364				aining the unit risk, defined as the
4365				additional cancer resulting from a
4366		-		n of the substance being
4367				estimated from the unit risk in $(1)(7)$
4368				subsection (b)(7). In calculating a
4369			nust review alternate	scientifically valid protocols if so
4370 4371		requested.		
4371		If in a study of a si	ngla gracies more the	n one type of tumor is induced by
4372	/			nest of the CPFs is used.
4374		exposure to the toz	the substance, the high	lest of the CITS is used.
4375		If two or more stu	lies vary in either spe	cies, strain or sex of the test
4376	,		r type, the highest CP	
4377			r type, the ingrest er	
4378		If more than one tu	mor of the same type	is found in some of the test
4379	,		• •	the dose response relationship is
4380)		-	al. The potency estimate for this
4381	l	dose response rela	tionship is used if it is	higher than estimates resulting
4382	2	from other method	s	
4383	3			
4384	6)	If two or more stud	lies are identical rega	rding species, strain and sex of the
4385		test animal, and tu	mor type, the highest	of the CPFs is used.
4386				
4387	/		-	en animal species and humans
4388		U		version of units of exposure to
4389		-		ram of body weight per day
4390			1 1	ed in the USEPA document
4391				essment of 1,3-butadiene",
4392	2	incorporated by re-	ference in 35 Ill. Adm	. Code 301.106.

POLLUTION CONTROL BOARD

4393			
4394	c)	If bot	h a human epidemiologic study and a study of mammalian test species are
4395	,		able for use in subsections (a) and (b), the risk associated intake is
4396			mined as follows:
4397			
4398		1)	When the human epidemiologic study provides evidence of a carcinogenic
4399		,	effect on humans, the RAI is calculated from the human epidemiology
4400			study as specified in subsection (a).
4401			
4402		2)	When the mammalian study provides evidence a carcinogenic effect on
4403		_)	humans, but the human epidemiologic study does not, a cancer risk to
4404			humans is assumed and the risk associated intake is calculated as specified
4405			in subsection (b).
4406			(-).
4407			
4408	(Sou	rce: Ar	nended at 46 Ill. Reg, effective)
4409	(
	ion 302.	.657 De	etermining the Human Nonthreshold Criterion
4411			
	HNC is	calculat	ed according to the equation:
4413		• 410 4140	
4414			$HNC = RAI/[W + (F \times BCF)]$
4415			
4416	wher	e.	
4417	wher	0.	
4418	HNC		Human Nonthreshold Protection Criterion in milligrams per liter
4419	Inte		(mg/L);
4420			(
4421	RAL		Risk Associated Intake of a substance in milligrams per day (mg/d)
4422	iu ii		which is associated with a lifetime cancer risk level equal to a ratio
4423			of one to 1,000,000 as derived in <u>35 Ill. Adm. Code</u> Section 302.654;
4424			of the to 1,000,000 as derived in $\underline{55 \text{ m}}$. Adm. Code Section 502.054,
4425	W		- Per capita daily water consumption equal to 2 liters per day (L/d)
4426	••		for surface waters at the point of intake of a public or food processing
4427			water supply, or equal to 0.01 liters per day (L/d) which represents
4428			incidental exposure through contact or ingestion of small volumes of
4429			water while swimming or during other recreational activities for areas
4430			which are determined to be public access areas <u>under 35 Ill. Adm.</u>
1750			which are determined to be public access areas <u>ander 55 m. ram.</u>

NOTICE OF PROPOSED AMENDMENTS

4431 4432 4433	<u>Codepursuant to Section 302.102(b)(3), or 0.001 liters per day (L/d) for</u> other waters;
4434 4435 4436	E — Assumed daily fish consumption in the United States equal to 0.020 kilograms per day (kg/d); and
1	BCF = Aquatic Life Bioconcentration Factor with units of liter per kilogram (L/kg) as derived in <u>35 Ill. Adm. Code</u> Section 302.663.
	$\frac{\text{HNC}}{\underline{=}} \frac{\text{Human Nonthreshold Protection Criterion in milligrams per liter}}{\underline{(\text{mg/L})};}$
	<u>RAI</u> = <u>Risk Associated Intake of a substance in milligrams per day (mg/d)</u> which is associated with a lifetime cancer risk level equal to a ratio of one to 1,000,000 as derived in 35 III. Adm. Code 302.654;
	W = Per capita daily water consumption equal to 2 liters per day (L/d) for surface waters at the point of intake of a public or food processing water supply, or equal to 0.01 liters per day (L/d) which represents incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities for areas which are determined to be public access areas under 35 Ill. Adm. Code 302.102(b)(3), or 0.001 liters per day (L/d)
	<u>for other waters;</u> <u>F</u> = Assumed daily fish consumption in the United States equal to 0.020 kilograms per day (kg/d); and BCF = Aquatic Life Bioconcentration Factor with units of liter per
	kilogram (L/kg) as derived in 35 Ill. Adm. Code 302.663.
4442	Source: Amended at 46 Ill. Reg, effective) 302.658 Stream Flow for Application of Human Nonthreshold Criterion
4444 4445The HN	C applies <u>-shall apply</u> at all times except during periods when flows are less than the c mean flow (Qhm), as determined by:
4448	Qhm = N / SUM(1/Qi)

4449

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

4450	Where	e:		
4451				
4452		Qhm =	- harmonic mean flow,	
4453				
4454		N = nu	umber of daily values for stream flows, and	
4455				
4456		Qi = d	aily streamflow value on day i.	
4457				
4458				
4459				
		<u>Qhm</u>	harmonic mean flow, number of daily values for stream flows, and	
		N	= number of daily values for stream flows, and	
		Qi	= <u>daily streamflow value on day i.</u>	
4460				
4461	(Sourc	ce: Ame	ended at 46 Ill. Reg, effective)	
4462				
	n 302.6	63 Det	ermination of Bioconcentration Factors	
4464				
			actor equals the concentration of a substance in all or part of an aquatic	
4466organism in milligrams per kilogram of wet tissue weight (mg/kg), divided by the concentration				
			e water to which the organism is exposed in milligrams of the substance per	
4468liter of	water ((mg/L).		
4469				
4470	a)		oconcentration Factor is calculated from a field study if the following	
4471		conditi	ions are met:	
4472				
4473		1)	Data are available to show that the concentration of the substance in the	
4474			water to which the organism was exposed remained constant over the	
4475			range of territory inhabited by the organism and for a period of time	
4476			exceeding 28 days;	
4477				
4478		2)	Competing mechanisms for removal of the substance from solution did	
4479			not affect the bioavailability of the substance; and	
4480				
4481		3)	The concentration of the substance to which the organism was exposed is	
4482			less than the lowest concentration causing any adverse effects on the	
4400			•	

organism.

4483 4484

4485 4486 4487	b)	In the absence of a field-derived Bioconcentration Factor, the Bioconcentration Factor is calculated from a laboratory test if the following conditions are met:
4488		1) The Bioconcentration Factor was calculated from measured concentrations
4489		of the toxic substance in the test solution;
4490		
4491		2) The laboratory test was of sufficient duration to have reached steady-state
4492		which is defined as a less than 10 percent change in the calculated
4493		Bioconcentration Factor over a 2-day period or 16 percent of the test
4494		duration whichever is longer. In the absence of a laboratory test which has
4495		reached steady-state, the Bioconcentration Factor may be calculated from
4496		a laboratory test with a duration greater than 28 days if more than one test
4497		is available for the same species of organism;
4498		1 8 /
4499		3) The concentration of the toxic substance to which the test organism was
4500		exposed is less than the lowest concentration causing any adverse effects
4501		on the organism;
4502		
4503		4) If more than one Bioconcentration Factor for the same species is available,
4504		the geometric mean of the Bioconcentration Factors is used; and
4505		
4506		5) The Bioconcentration Factor is calculated on a wet tissue weight basis. A
4507		Bioconcentration Factor calculated using dry tissue weight must-shall be
4508		converted to a wet tissue weight basis by multiplying the dry weight
4509		bioconcentration value by 0.1 for plankton and by 0.2 for individual
4510		species of fishes and invertebrates.
4511		
4512	c)	In the absence of any Bioconcentration Factors measured from field studies as
4513		specified in subsection (a) or laboratory studies which have reached steady-state
4514		as specified in subsection (b), the Bioconcentration Factor is calculated according
4515		to the equation:
4516		
4517		$\log BCF = A + B \log Kow$
4518		
4519		Where:
4520		
4521		BCF = Bioconcentration Factor;
4522		

		POLLUTION CONTROL BOARD
		NOTICE OF PROPOSED AMENDMENTS
4523		Kow = The octanol/water partition coefficient measured as
4524		specified in ASTM E 1147, incorporated by reference in 35 Ill.
4525		Adm. Code 301.106 (If the Kow is not available from laboratory
4526		testing, it must hallmust be calculated from structure-activity
4527		relationships or available regression equations.); and
4528		······································
4529		The constants $A = -0.23$ and $B = 0.76$ must hall must be used
4530		unless a change in the value of the constants is requested (The
4531		Agency mustshallmust honor requests for changes only if such
4532		changes are accompanied by scientifically valid supporting data.).
4533		
4534	(Sou	rce: Amended at 46 Ill. Reg, effective)
4535		
4536Sect	tion 302.	.666 Utilizing the Bioconcentration Factor
4537		
4538The	Biocono	centration Factor derived in 35 Ill. Adm. CodeSectionCode 302.663 is used to
4539calc	ulate wa	ter quality criteria for a substance as specified below:
4540		
4541	a)	When calculating a WDAPC as described in 35 Ill. Adm. CodeSection Code
4542		302.633, the geometric mean of all available steady-state whole body
4543		Bioconcentration Factors for fish and shellfish species which constitutes or
4544		represents a portion of the diet of indigenous wild and domestic animal species is
4545		used. Additional considerations in deriving a Bioconcentration Factor include:
4546		
4547		1) An edible portion Bioconcentration Factor is converted to a whole body
4548		Bioconcentration Factor for a fish or shellfish species by multiplying the
4549		edible portion Bioconcentration Factor by the ratio of the percent lipid in
4550		the whole body to the percent lipid in the edible portion of the same
4551		species.
4552 4553		2) A Bioconcentration Factor calculated as described in 35 Ill. Adm.
4554		 A Bioconcentration Factor calculated as described in 35 Ill. Adm. <u>CodeSectionCode</u> 302.663(c) is converted to a whole body
4555		Bioconcentration Factor by multiplying the calculated Bioconcentration
4556		Factor by the ratio of the percent lipid in the whole body to 7.6.
4557		ractor by the ratio of the percent lipid in the whole body to 7.0.
4558	b)	When calculating either a human threshold criterion or a human nonthreshold
4559	5)	criterion as described in 35 Ill. Adm. <u>CodeSectionsCode</u> 302.642 through 302.648
4560		and 35 Ill. Adm. CodeSectionsCode 302.651 through 302.657, respectively, the

	4561 4562 4563 4564		geometric mean of all available edible portion Bioconcentration Factors for fish and shellfish species consumed by humans is used. Additional considerations in deriving a Bioconcentration Factor include:		
	4565 4566		1)	Edible	portions include:
	4567 4568			A)	Decapods $-$ muscle tissue.
	4569 4570			B)	Bivalve molluscs $-$ total living tissue.
	4571 4572 4573 4574			C)	Scaled fishes — boneless, scaleless filets including skin except for bloater chubs in which the edible portion is the whole body excluding head, scales and <u>visceraviseravisera</u> .
	4575 4576			D)	Smooth-skinned fishes — boneless, skinless filets.
	4577 4578 4579 4580		2)	Biocon Factor	le body Bioconcentration Factor is converted to an edible portion icentration Factor by multiplying the whole body Bioconcentration of a species by the ratio of the percent lipid in the edible portion to cent lipid in the whole body of the same species.
	4581 4582 4583 4584 4585 4586		3)	<u>Code</u> So Biocon	concentration Factor calculated as described in 35 Ill. Adm. <u>ection Code</u> 302.663 is converted to an edible portion iccentration Factor by multiplying the calculated Bioconcentration by the ratio of the percent lipid in the edible portion to 7.6.
		(Source	e: Ame	nded at	46 Ill. Reg, effective)
		n 302.60	69 List	ing of I	Derived Criteria
	4590 4591 4592 4593 4594 4595	a)	to this whene	Subpart	ust <u>shall</u> develop and maintain a listing of toxicity criteria pursuant This list must shall-be made available to the public and updated w criterion is derived and must <u>shall</u> be published when updated in gister.
		b)			blished pursuant to subsection (a) may be proposed to the Board for numeric water quality standard.

ł	LLINOIS R	EGISTER1 st	JCAR350302-2207052r01
		POLLUTION CON	TROL BOARD
		NOTICE OF PROPOSE	ED AMENDMENTS
4599 4600 4601 4602 4603	c)	limited to, assumptions, toxicity dat derivation of derive any toxicity crit adopted by the Board as a water qua	-
4604	(Sou	rce: Amended at 46 Ill. Reg,	effective)

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

 4606Section 302.APPENDIX A References to Previous Rules (Repealed)

 4607

 4608The following table is provided to aid in referencing old Board rule numbers to section numbers

 4609pursuant to codification.

 Chapter 3: Water Pollution
 35 Ill. Admin. Code

 Part II, Water Quality Standards
 Parts 302 and 303

Unnumbered Preamble	Section 302.101
Rule 201	Section 302.102
Rule 202	Section 302.103
Rule 203	Section 302.201,
	Section 302.202,
	Section 303.201
Rule 203(a)	Section 302.203
Rule 203(b)	Section 302.204
Rule 203(c)	Section 302.205
Rule 203(d)	Section 302.206
Rule 203(e)	Section 302.207
Rule 203(f)	Section 302.208
Rule 203(g)	Section 302.209
Rule 203(h)	Section 302.210
Rule 203(i)	Section 302.211(a)
Rule 203(i)(1)	Section 302.211(b)
Rule 203(i)(2)	Section 302.211(c)
Rule 203(i)(3)	Section 302.211(d)
Rule 204(i)(4)	Section 302.211(e)
	Section 303.311
	Section 303.321
	Section 303.331
	Section 303.341
	Section 303.351
	Section 303.361
Rule 203(i) (Unnumbered Paragraph)	Section 302.104
Rule 203(i)(5)	Section 302.211(f)
Rule 203(i)(6)	Section 302.211(g)
Rule 203(i)(7)	Section 302.211(h)
Rule 203(i)(8)	Section 302.211(i)
Rule 203(i)(9)	Deleted

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

$\frac{\text{Rule 203(i)(10)}}{\text{Rule 203(i)(11)(11)}}$	Section 302.211(j), 303.500
Rule 203(i)(11)(bb)	Section 303.502
Rule 203.1(a)	Section 303.312
Rule 203.1(b)	Section 303.352
Rule 204	Section 302.301
	Section 302.302
	Section 303.202
Rule 204(a)	Section 302.303
Rule 204(b)	Section 302.304
Rule 204(c)	Section 302.305
Rule 205	Section 302.401
Rule 205(a)	Section 302.403
Rule 205(b)	Section 302.404
Rule 205(c)	Section 302.405
Rule 205(d)	Section 302.406
Rule 205(e)	Section 302.407
Rule 205(f)	Section 302.408
Rule 205(g)	Section 302.409
Rule 205(h)	Section 302.410
Rule 206	Section 302.501
Rule 206(a)	Section 302.502
Rule 206(b)	Section 302.503
Rule 206(c)	Section 302.504
Rule 206(d)	Section 302.505
Rule 206(e)	Section 302.506(a)
Rule 206(e)(1)(A)	Section 302.507(a)
Rule 206(e)(1)(B)	Section 302.507(b)
Rule 206(e)(1)(C)	Section 302.506(b)
Rule 206(e)(1)(D)	Section 302.506(c)
Rule 206(e)(2)	Section 302.508
Rule 206(e)(3)	Section 302.509
Rule 207	Section 303.203
Rule 208	Section 302.105
510	
11 (C D1.1.4	

4610 4611

(Source: Repealed at 46 Ill. Reg. ____, effective _____)

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

4613Section 302.APPENDIX B Sources of Codified Sections (Repealed) 4614

35 Ill. Adm. Code	Chapter 3: Water Pollution
Parts 302 and 303	Part II, Water Quality Standards
	Part III, Water Use Designations

Section

302.101	General, Unnumbered preamble to
	Part II
302.102(a)	Rule 201(a)
302.102(b)	Rule 201(a)
302.102(c)	Rule 201(b)
302.103	Rule 202
302.104	Rule 203(i)
302.105	Rule 208
302.201	General, Rule 203
302.202	Rule 203
302.203	Rule 203(a)
302.204	Rule 203(b)
302.205	Rule 203(c)
302.206	Rule 203(d)
302.207	Rule 203(e)
302.208	Rule 203(f)
302.209	Rule 203(g)
302.210	Rule 203(h)
302.211(a)	Rule 203(i)
302.211(b)	Rule 203(i)(1)
302.211(c)	Rule 203(i)(2)
302.211(d)	Rule 203(i)(3)
302.211(e)	Rule 203(i)(4)
302.211(f)	Rule 203(i)(5)
302.211(g)	Rule 203(i)(6)
302.211(h)	Rule 203(i)(7)
302.211(i)	Rule 203(i)(8)
302.211(j)	Rule 203(i)(10)
302.301	General, Rule 204, Rule 303

POLLUTION CONTROL BOARD

303 303	D 1 204
302.302	Rule 204
302.303	Rule 204(a)
302.304	Rule 204(b)
302.305	Rule 204(c)
302.401	General, Rule 205, Rule 302
302.402	Rule 302
302.403	Rule 205(a)
302.404	Rule 205(b)
302.405	Rule 205(c)
302.406	Rule 205(d)
302.407	Rule 205(e)
302.408	Rule 205(f)
302.409	Rule 205(g)
302.410	Rule 205(h)
302.501	General, Rule 206
302.502	Rule 206(a)
302.503	Rule 206(b)
302.504	Rule 206(c)
302.505	Rule 206(d)
302.506(a)	Rule 206(e)
302.506(b)	Rule 206(e)(1)(C)
302.506(c)	Rule 206(e)(1)(D)
302.507(a)	Rule 206(e)(1)(A)
302.507(b)	Rule 206(e)(1)(B)
302.508	Rule 206(e)(2)
302.509	Rule 206(e)(3)
4615	
4617 (Source: Repealed at 46 Ill. Reg.	_, effective)

Document comparison by Workshare Compare on Wednesday, May 11, 2022 4:06:02 PM

Input:	
Document 1 ID	file://I:\Input\Agency Rulemakings - Files Received\2022\Volume 46, Issue 20\35-302RG-P Agency.docx
Description	35-302RG-P Agency
Document 2 ID	file://I:\Input\Agency Rulemakings - Files Received\2022\Volume 46, Issue 20\35-302RG-P r01.docx
Description	35-302RG-P r01
Rendering set	Standard

Legend:

Insertion	
Deletion	
Moved from	
Moved to	
Style change	
Format change	
Moved deletion	
Inserted cell	
Deleted cell	
Moved cell	
Split/Merged cell	
Padding cell	

Statistics:	
	Count
Insertions	1304
Deletions	1542
Moved from	1
Moved to	1
Style changes	0
Format changes	0

Total changes	2848
---------------	------